3D Scatter

3D Print Quality Optimization

Additive manufacturing parameter optimization showing layer height, speed, and temperature effects.

Output
3D Print Quality Optimization
Python
import matplotlib.pyplot as plt
import numpy as np

np.random.seed(777)

# 3D printing parameters
n_prints = 120

layer_height = np.random.uniform(0.1, 0.4, n_prints)
print_speed = np.random.uniform(30, 100, n_prints)
temperature = np.random.uniform(190, 230, n_prints)

# Quality score
quality = 100 - layer_height * 50 - (print_speed - 50)**2 / 100 - np.abs(temperature - 210) * 0.5
quality += np.random.normal(0, 5, n_prints)
quality = np.clip(quality, 40, 100)

# Grade classification
grade = np.where(quality > 85, 'Excellent', np.where(quality > 70, 'Good', 'Poor'))
grade_colors = {'Excellent': '#6CF527', 'Good': '#27D3F5', 'Poor': '#F5276C'}
colors = [grade_colors[g] for g in grade]

fig = plt.figure(figsize=(10, 8), facecolor='#ffffff')
ax = fig.add_subplot(111, projection='3d', facecolor='#ffffff')

ax.scatter(layer_height, print_speed, temperature, c=colors, s=quality*0.8, 
           alpha=0.7, edgecolors='#374151', linewidths=0.3)

ax.set_xlabel('Layer Height (mm)', color='#1f2937', fontsize=10)
ax.set_ylabel('Print Speed (mm/s)', color='#1f2937', fontsize=10)
ax.set_zlabel('Temperature (°C)', color='#1f2937', fontsize=10)
ax.set_title('3D Print Quality Optimization', color='#1f2937', fontsize=14, fontweight='bold', pad=20)

ax.tick_params(colors='#6b7280', labelsize=8)
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis.pane.set_edgecolor('#e5e7eb')
ax.yaxis.pane.set_edgecolor('#e5e7eb')
ax.zaxis.pane.set_edgecolor('#e5e7eb')

ax.view_init(elev=20, azim=45)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

3D Charts

Did this help you?

Support PyLucid to keep it free & growing

Support