Histogram

A/B Test Results

Conversion rate comparison.

Output
A/B Test Results
Python
import matplotlib.pyplot as plt
import numpy as np

COLORS = {'control': '#64748B', 'variant': '#10B981', 'background': '#FFFFFF', 'text': '#1E293B', 'text_muted': '#64748B', 'grid': '#F1F5F9'}

np.random.seed(42)
control = np.random.binomial(100, 0.12, 1000) / 100
variant = np.random.binomial(100, 0.15, 1000) / 100

fig, ax = plt.subplots(figsize=(10, 6), dpi=100)
ax.set_facecolor(COLORS['background'])
fig.patch.set_facecolor(COLORS['background'])

bins = np.linspace(0.05, 0.25, 25)
ax.hist(control, bins=bins, color=COLORS['control'], edgecolor='white', linewidth=0.5, alpha=0.7, label='Control')
ax.hist(variant, bins=bins, color=COLORS['variant'], edgecolor='white', linewidth=0.5, alpha=0.7, label='Variant')

ax.axvline(np.mean(control), color=COLORS['control'], linewidth=2, linestyle='--')
ax.axvline(np.mean(variant), color=COLORS['variant'], linewidth=2, linestyle='--')

lift = (np.mean(variant) - np.mean(control)) / np.mean(control) * 100
ax.text(0.97, 0.95, f'+{lift:.1f}% lift', transform=ax.transAxes, fontsize=12, fontweight='bold',
        verticalalignment='top', horizontalalignment='right', color=COLORS['variant'])

ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color(COLORS['grid'])
ax.spines['bottom'].set_color(COLORS['grid'])
ax.yaxis.grid(True, color=COLORS['grid'], linewidth=1, zorder=0)
ax.set_axisbelow(True)
ax.tick_params(axis='both', colors=COLORS['text_muted'], labelsize=9, length=0, pad=8)
ax.set_xlabel('Conversion Rate', fontsize=10, color=COLORS['text'], labelpad=10)
ax.set_ylabel('Frequency', fontsize=10, color=COLORS['text'], labelpad=10)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.12), ncol=2, frameon=False, fontsize=10, labelcolor=COLORS['text_muted'])

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Basic Charts

Did this help you?

Support PyLucid to keep it free & growing

Support