3D Trisurf
Ackley Optimization Trisurf
Ackley optimization benchmark function with many local minima in purple-indigo gradient.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
# Scattered sampling
np.random.seed(55)
n_points = 600
x = np.random.uniform(-4, 4, n_points)
y = np.random.uniform(-4, 4, n_points)
# Ackley function
a, b, c = 20, 0.2, 2*np.pi
z = -a * np.exp(-b * np.sqrt(0.5*(x**2 + y**2))) - np.exp(0.5*(np.cos(c*x) + np.cos(c*y))) + a + np.e
# Custom colormap
colors = ['#ffffff', '#ede9fe', '#4927F5', '#8b5cf6', '#c4b5fd']
cmap = LinearSegmentedColormap.from_list('purple_indigo', colors, N=256)
fig = plt.figure(figsize=(10, 8), facecolor='#ffffff')
ax = fig.add_subplot(111, projection='3d', facecolor='#ffffff')
surf = ax.plot_trisurf(x, y, z, cmap=cmap, alpha=0.85, linewidth=0.1, edgecolor='#33333308')
ax.set_xlabel('X', fontsize=10, color='#374151', labelpad=10)
ax.set_ylabel('Y', fontsize=10, color='#374151', labelpad=10)
ax.set_zlabel('f(x,y)', fontsize=10, color='#374151', labelpad=10)
ax.set_title("Ackley Optimization Trisurf", fontsize=14, color='#1f2937', fontweight='bold', pad=20)
ax.tick_params(colors='#6b7280', labelsize=8)
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis.pane.set_edgecolor('#e5e7eb')
ax.yaxis.pane.set_edgecolor('#e5e7eb')
ax.zaxis.pane.set_edgecolor('#e5e7eb')
ax.view_init(elev=30, azim=135)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
3D Charts
More 3D Trisurf examples
☕