Linear Regression Plot
Age vs Blood Pressure
Cardiovascular health trend analysis
Output
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
np.random.seed(417)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'
n = 90
age = np.random.uniform(25, 75, n)
bp = 100 + 0.5 * age + np.random.normal(0, 10, n)
df = pd.DataFrame({'Age (years)': age, 'Systolic BP (mmHg)': bp})
fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)
sns.regplot(
data=df,
x='Age (years)',
y='Systolic BP (mmHg)',
scatter_kws={'color': '#F5276C', 'alpha': 0.6, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
line_kws={'color': '#276CF5', 'linewidth': 2.5},
ci=95,
ax=ax
)
for collection in ax.collections[1:]:
collection.set_facecolor('#276CF5')
collection.set_alpha(0.15)
ax.axhline(120, color='#22c55e', linestyle='--', alpha=0.5, linewidth=1)
ax.text(73, 122, 'Normal', color='#22c55e', fontsize=9, ha='right')
ax.axhline(140, color='#ef4444', linestyle='--', alpha=0.5, linewidth=1)
ax.text(73, 142, 'High', color='#ef4444', fontsize=9, ha='right')
corr = np.corrcoef(age, bp)[0, 1]
ax.text(0.05, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
color='#276CF5', fontweight='bold', va='top',
bbox=dict(boxstyle='round,pad=0.3', facecolor='#f8fafc', edgecolor='#e5e7eb'))
ax.set_xlabel('Age (years)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Systolic BP (mmHg)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Age vs Blood Pressure', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#e5e7eb')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Linear Regression Plot examples
☕