Linear Regression Plot

Age vs Blood Pressure

Cardiovascular health trend analysis

Output
Age vs Blood Pressure
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

np.random.seed(417)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'

n = 90
age = np.random.uniform(25, 75, n)
bp = 100 + 0.5 * age + np.random.normal(0, 10, n)

df = pd.DataFrame({'Age (years)': age, 'Systolic BP (mmHg)': bp})

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

sns.regplot(
    data=df,
    x='Age (years)',
    y='Systolic BP (mmHg)',
    scatter_kws={'color': '#F5276C', 'alpha': 0.6, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
    line_kws={'color': '#276CF5', 'linewidth': 2.5},
    ci=95,
    ax=ax
)

for collection in ax.collections[1:]:
    collection.set_facecolor('#276CF5')
    collection.set_alpha(0.15)

ax.axhline(120, color='#22c55e', linestyle='--', alpha=0.5, linewidth=1)
ax.text(73, 122, 'Normal', color='#22c55e', fontsize=9, ha='right')
ax.axhline(140, color='#ef4444', linestyle='--', alpha=0.5, linewidth=1)
ax.text(73, 142, 'High', color='#ef4444', fontsize=9, ha='right')

corr = np.corrcoef(age, bp)[0, 1]
ax.text(0.05, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
        color='#276CF5', fontweight='bold', va='top',
        bbox=dict(boxstyle='round,pad=0.3', facecolor='#f8fafc', edgecolor='#e5e7eb'))

ax.set_xlabel('Age (years)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Systolic BP (mmHg)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Age vs Blood Pressure', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#e5e7eb')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support