ANOVA Violin Plot
Agricultural Crop Yield ANOVA
Comparing harvest yields across different fertilizer treatments.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
np.random.seed(1313)
# Yield in tons per hectare
control = np.random.normal(3.2, 0.6, 80)
organic = np.random.normal(3.8, 0.55, 80)
synthetic = np.random.normal(4.5, 0.7, 80)
bio_enhanced = np.random.normal(4.2, 0.5, 80)
F_stat, p_value = stats.f_oneway(control, organic, synthetic, bio_enhanced)
fig, ax = plt.subplots(figsize=(12, 7), facecolor='#ffffff')
ax.set_facecolor='#ffffff'
colors = ['#9C2007', '#6CF527', '#276CF5', '#F5D327']
parts = ax.violinplot([control, organic, synthetic, bio_enhanced],
positions=[1, 2, 3, 4], showmeans=True, showmedians=True, widths=0.7)
for i, pc in enumerate(parts['bodies']):
pc.set_facecolor(colors[i])
pc.set_alpha(0.65)
pc.set_edgecolor(colors[i])
pc.set_linewidth(2)
parts['cmeans'].set_color='#F5276C'
parts['cmeans'].set_linewidth(2.5)
parts['cmedians'].set_color('#1f2937')
for partname in ['cbars', 'cmins', 'cmaxes']:
parts[partname].set_color('#9ca3af')
# Baseline reference
ax.axhline(y=3.0, color='#ef4444', linestyle=':', alpha=0.6, linewidth=1.5)
ax.text(4.55, 3.0, 'Baseline', fontsize=9, color='#ef4444', va='center')
labels = ['Control\n(No Fertilizer)', 'Organic', 'Synthetic\nNPK', 'Bio-Enhanced']
means = [control.mean(), organic.mean(), synthetic.mean(), bio_enhanced.mean()]
# Improvement percentages
baseline = control.mean()
for i, (mean, color) in enumerate(zip(means[1:], colors[1:])):
improvement = ((mean - baseline) / baseline) * 100
ax.text(i+2, mean + 0.4, f'+{improvement:.0f}%', ha='center', fontsize=10,
color=color, fontweight='bold')
# Cost annotations
costs = ['$0', '$180', '$120', '$250']
for i, (cost, color) in enumerate(zip(costs, colors)):
ax.text(i+1, 1.5, f'Cost/ha: {cost}', ha='center', fontsize=8, color='#6b7280')
stats_text = f"YIELD ANALYSIS\n{'─'*16}\nF = {F_stat:.2f}\np = {p_value:.4f}\n\nHighest Yield:\nSynthetic NPK\n(μ = {synthetic.mean():.2f} t/ha)"
bbox = dict(boxstyle="round,pad=0.5", facecolor='#fefce8', edgecolor='#F5D327', lw=2)
ax.text(0.02, 0.98, stats_text, transform=ax.transAxes, fontsize=10, color='#1f2937',
va='top', fontfamily='monospace', bbox=bbox)
ax.set_xticks([1, 2, 3, 4])
ax.set_xticklabels(labels, fontsize=10, color='#1f2937')
ax.set_ylabel('Yield (Tons/Hectare)', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Wheat Yield by Fertilizer Treatment\n2-Year Field Trial Results',
fontsize=14, color='#1f2937', fontweight='bold', pad=15)
ax.tick_params(colors='#374151')
for spine in ax.spines.values():
spine.set_color('#e5e7eb')
ax.yaxis.grid(True, color='#f3f4f6', linewidth=0.8)
ax.set_axisbelow(True)
ax.set_ylim(1.3, 6.5)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More ANOVA Violin Plot examples
☕