Calendar Heatmap
Air Quality Index Calendar
Daily AQI levels showing pollution patterns throughout the year.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.patches as mpatches
np.random.seed(202)
days = 365
# Simulate AQI - worse in winter (heating), better in spring/fall
base_aqi = 80 - 30 * np.cos(2 * np.pi * (np.arange(days)) / 365)
aqi = base_aqi + np.random.exponential(20, days)
aqi = np.clip(aqi, 0, 300)
aqi_levels = np.digitize(aqi, bins=[0, 50, 100, 150, 200, 250]) - 1
weeks = 53
data = np.zeros((7, weeks))
for i, val in enumerate(aqi_levels):
week = i // 7
day = i % 7
if week < weeks:
data[day, week] = val
# Temperature palette: cold to hot (good to bad)
colors = ['#1e3a8a', '#3b82f6', '#22d3ee', '#fbbf24', '#f97316', '#dc2626']
cmap = LinearSegmentedColormap.from_list('aqi', colors, N=256)
fig, ax = plt.subplots(figsize=(16, 4), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')
im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=0, vmax=5)
ax.set_yticks(range(7))
ax.set_yticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], fontsize=9, color='#e2e8f0')
ax.set_xticks(range(0, 52, 4))
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', ''],
fontsize=9, color='#e2e8f0')
ax.set_title('Air Quality Index - Daily Pollution Levels', fontsize=16, color='white', fontweight='bold', pad=15)
for i in range(8):
ax.axhline(y=i-0.5, color='#1e293b', linewidth=0.5)
for i in range(weeks+1):
ax.axvline(x=i-0.5, color='#1e293b', linewidth=0.5)
ax.tick_params(colors='#e2e8f0', length=0)
for spine in ax.spines.values():
spine.set_visible(False)
legend_elements = [mpatches.Patch(facecolor=c, label=l, edgecolor='#334155')
for c, l in zip(colors, ['Good', 'Moderate', 'Sensitive', 'Unhealthy', 'Very Bad', 'Hazardous'])]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.15), ncol=6,
fontsize=8, facecolor='#1e293b', edgecolor='#334155', labelcolor='white')
good_days = int(np.sum(aqi < 100))
ax.annotate(f'{good_days} good air quality days', xy=(0.98, 1.1), xycoords='axes fraction',
fontsize=11, color='#3b82f6', ha='right', fontweight='bold')
plt.tight_layout()
plt.subplots_adjust(bottom=0.25)
plt.show()
Library
Matplotlib
Category
Time Series
More Calendar Heatmap examples
☕