Calendar Heatmap

Air Quality Index Calendar

Daily AQI levels showing pollution patterns throughout the year.

Output
Air Quality Index Calendar
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.patches as mpatches

np.random.seed(202)

days = 365
# Simulate AQI - worse in winter (heating), better in spring/fall
base_aqi = 80 - 30 * np.cos(2 * np.pi * (np.arange(days)) / 365)
aqi = base_aqi + np.random.exponential(20, days)
aqi = np.clip(aqi, 0, 300)

aqi_levels = np.digitize(aqi, bins=[0, 50, 100, 150, 200, 250]) - 1

weeks = 53
data = np.zeros((7, weeks))
for i, val in enumerate(aqi_levels):
    week = i // 7
    day = i % 7
    if week < weeks:
        data[day, week] = val

# Temperature palette: cold to hot (good to bad)
colors = ['#1e3a8a', '#3b82f6', '#22d3ee', '#fbbf24', '#f97316', '#dc2626']
cmap = LinearSegmentedColormap.from_list('aqi', colors, N=256)

fig, ax = plt.subplots(figsize=(16, 4), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')

im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=0, vmax=5)

ax.set_yticks(range(7))
ax.set_yticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], fontsize=9, color='#e2e8f0')
ax.set_xticks(range(0, 52, 4))
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', ''], 
                   fontsize=9, color='#e2e8f0')

ax.set_title('Air Quality Index - Daily Pollution Levels', fontsize=16, color='white', fontweight='bold', pad=15)

for i in range(8):
    ax.axhline(y=i-0.5, color='#1e293b', linewidth=0.5)
for i in range(weeks+1):
    ax.axvline(x=i-0.5, color='#1e293b', linewidth=0.5)

ax.tick_params(colors='#e2e8f0', length=0)
for spine in ax.spines.values():
    spine.set_visible(False)

legend_elements = [mpatches.Patch(facecolor=c, label=l, edgecolor='#334155') 
                   for c, l in zip(colors, ['Good', 'Moderate', 'Sensitive', 'Unhealthy', 'Very Bad', 'Hazardous'])]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.15), ncol=6, 
          fontsize=8, facecolor='#1e293b', edgecolor='#334155', labelcolor='white')

good_days = int(np.sum(aqi < 100))
ax.annotate(f'{good_days} good air quality days', xy=(0.98, 1.1), xycoords='axes fraction',
            fontsize=11, color='#3b82f6', ha='right', fontweight='bold')

plt.tight_layout()
plt.subplots_adjust(bottom=0.25)
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support