Correlogram
Antarctic Penguin Study
Antarctic wildlife dataset correlogram by penguin species
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(789)
n = 150
species = np.random.choice(['Adelie', 'Chinstrap', 'Gentoo'], n)
data = {
'Bill Length': np.where(species == 'Adelie', np.random.normal(38.8, 2.7, n),
np.where(species == 'Chinstrap', np.random.normal(48.8, 3.3, n), np.random.normal(47.5, 3.1, n))),
'Bill Depth': np.where(species == 'Adelie', np.random.normal(18.3, 1.2, n),
np.where(species == 'Chinstrap', np.random.normal(18.4, 1.1, n), np.random.normal(15, 1, n))),
'Flipper (mm)': np.where(species == 'Gentoo', np.random.normal(217, 6.5, n),
np.where(species == 'Chinstrap', np.random.normal(195, 7, n), np.random.normal(190, 6.5, n))),
'Body Mass (g)': np.where(species == 'Gentoo', np.random.normal(5076, 500, n),
np.where(species == 'Chinstrap', np.random.normal(3733, 380, n), np.random.normal(3701, 460, n))),
'Species': species
}
df = pd.DataFrame(data)
sns.set_style("whitegrid", {'axes.facecolor': '#ffffff', 'figure.facecolor': '#ffffff', 'grid.color': '#eeeeee'})
palette = {'Adelie': '#F54927', 'Chinstrap': '#4927F5', 'Gentoo': '#27F5B0'}
g = sns.pairplot(
df,
hue='Species',
palette=palette,
height=2,
kind='scatter',
diag_kind='kde',
markers=['o', 's', '^'],
plot_kws={'alpha': 0.75, 's': 55, 'edgecolor': 'white', 'linewidths': 0.6},
diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)
g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
if ax:
ax.set_facecolor('#ffffff')
for spine in ax.spines.values():
spine.set_color('#dddddd')
ax.tick_params(colors='#666666')
ax.xaxis.label.set_color('#333333')
ax.yaxis.label.set_color('#333333')
g.fig.suptitle('Palmer Penguins Dataset', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Correlogram examples
☕