Correlogram

Antarctic Penguin Study

Antarctic wildlife dataset correlogram by penguin species

Output
Antarctic Penguin Study
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

np.random.seed(789)

n = 150
species = np.random.choice(['Adelie', 'Chinstrap', 'Gentoo'], n)
data = {
    'Bill Length': np.where(species == 'Adelie', np.random.normal(38.8, 2.7, n),
                           np.where(species == 'Chinstrap', np.random.normal(48.8, 3.3, n), np.random.normal(47.5, 3.1, n))),
    'Bill Depth': np.where(species == 'Adelie', np.random.normal(18.3, 1.2, n),
                          np.where(species == 'Chinstrap', np.random.normal(18.4, 1.1, n), np.random.normal(15, 1, n))),
    'Flipper (mm)': np.where(species == 'Gentoo', np.random.normal(217, 6.5, n),
                            np.where(species == 'Chinstrap', np.random.normal(195, 7, n), np.random.normal(190, 6.5, n))),
    'Body Mass (g)': np.where(species == 'Gentoo', np.random.normal(5076, 500, n),
                             np.where(species == 'Chinstrap', np.random.normal(3733, 380, n), np.random.normal(3701, 460, n))),
    'Species': species
}
df = pd.DataFrame(data)

sns.set_style("whitegrid", {'axes.facecolor': '#ffffff', 'figure.facecolor': '#ffffff', 'grid.color': '#eeeeee'})

palette = {'Adelie': '#F54927', 'Chinstrap': '#4927F5', 'Gentoo': '#27F5B0'}

g = sns.pairplot(
    df,
    hue='Species',
    palette=palette,
    height=2,
    kind='scatter',
    diag_kind='kde',
    markers=['o', 's', '^'],
    plot_kws={'alpha': 0.75, 's': 55, 'edgecolor': 'white', 'linewidths': 0.6},
    diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)

g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
    if ax:
        ax.set_facecolor('#ffffff')
        for spine in ax.spines.values():
            spine.set_color('#dddddd')
        ax.tick_params(colors='#666666')
        ax.xaxis.label.set_color('#333333')
        ax.yaxis.label.set_color('#333333')

g.fig.suptitle('Palmer Penguins Dataset', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support