Hexbin Plot

API Latency Distribution

Request payload size vs response latency for performance optimization.

Output
API Latency Distribution
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(42)
n_requests = 15000

payload_size = np.random.lognormal(6, 1.2, n_requests)
payload_size = np.clip(payload_size, 10, 10000)

base_latency = 20 + 0.01 * payload_size
latency = base_latency + np.random.exponential(15, n_requests)
latency = np.clip(latency, 5, 500)

fig, ax = plt.subplots(figsize=(10, 8), facecolor='#ffffff')
ax.set_facecolor('#f8fafc')

colors = ['#f8fafc', '#f1f5f9', '#e2e8f0', '#cbd5e1', '#94a3b8', 
          '#64748b', '#475569', '#334155', '#1e293b', '#0f172a']
cmap = LinearSegmentedColormap.from_list('slate', colors, N=256)

hb = ax.hexbin(payload_size, latency, gridsize=40, cmap=cmap, mincnt=1,
               edgecolors='white', linewidths=0.3)

ax.axhline(y=100, color='#22c55e', linestyle='--', alpha=0.8, linewidth=2, label='SLA Target (100ms)')
ax.axhline(y=200, color='#f59e0b', linestyle=':', alpha=0.8, linewidth=2, label='Warning (200ms)')
ax.axhline(y=300, color='#ef4444', linestyle='--', alpha=0.7, linewidth=2, label='Critical (300ms)')

cbar = plt.colorbar(hb, ax=ax, pad=0.02, shrink=0.85)
cbar.set_label('Request Count', fontsize=11, color='#1e293b', labelpad=10)
cbar.ax.yaxis.set_tick_params(color='#334155')
cbar.outline.set_edgecolor('#e2e8f0')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#334155', fontsize=9)

ax.set_xlabel('Payload Size (bytes)', fontsize=12, color='#1e293b', fontweight='600', labelpad=12)
ax.set_ylabel('Latency (ms)', fontsize=12, color='#1e293b', fontweight='600', labelpad=12)
ax.set_title('API Performance Analysis', fontsize=16, color='#0f172a', fontweight='700', pad=20)

ax.tick_params(colors='#334155', labelsize=10, length=0)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#e2e8f0')
ax.spines['bottom'].set_color('#e2e8f0')

ax.legend(loc='upper left', fontsize=9, frameon=True, facecolor='white', 
          edgecolor='#e2e8f0', labelcolor='#1e293b')
ax.grid(True, alpha=0.3, color='#e2e8f0', linestyle='-', linewidth=0.5)
ax.set_axisbelow(True)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support