2D Histogram
API Latency vs Payload Size
2D histogram of API response times versus request payload sizes.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
np.random.seed(42)
# API performance data
payload_size = np.random.exponential(500, 5000) # KB
latency = 10 + payload_size * 0.05 + np.random.exponential(20, 5000)
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#020B14')
ax.set_facecolor('#020B14')
# Custom colormap: deep_purple to pink
colors = ['#020B14', '#1a0d2e', '#5314E6', '#F527B0']
cmap = LinearSegmentedColormap.from_list('purple_pink', colors, N=256)
h = ax.hist2d(payload_size, latency, bins=50, cmap=cmap, cmin=1)
cbar = plt.colorbar(h[3], ax=ax, pad=0.02)
cbar.set_label('Request Count', color='white', fontsize=11)
cbar.ax.yaxis.set_tick_params(color='white')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='white')
ax.set_xlabel('Payload Size (KB)', fontsize=11, color='white', fontweight='500')
ax.set_ylabel('Latency (ms)', fontsize=11, color='white', fontweight='500')
ax.set_title('API Latency vs Payload Size', fontsize=14, color='white', fontweight='bold', pad=15)
ax.tick_params(colors='white', labelsize=9)
for spine in ax.spines.values():
spine.set_color('#333333')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More 2D Histogram examples
☕