Raincloud Plot

API Response Time by Region

Latency distribution across global data centers

Output
API Response Time by Region
Python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import ptitprince as pt

np.random.seed(107)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'
COLORS = ['#4927F5', '#27F5B0', '#F54927']

regions = ['US-East', 'EU-West', 'Asia-Pacific']
data = pd.DataFrame({
    'Latency': np.concatenate([
        np.random.gamma(2, 15, 150),
        np.random.gamma(2.5, 18, 140),
        np.random.gamma(3, 20, 130)
    ]),
    'Region': ['US-East']*150 + ['EU-West']*140 + ['Asia-Pacific']*130
})

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

pt.RainCloud(x='Region', y='Latency', data=data, palette=COLORS,
             bw=.2, width_viol=.6, ax=ax, orient='h', alpha=.65,
             dodge=True, pointplot=False, move=.2)

ax.set_xlabel('Response Time (ms)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Region', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('API Latency by Data Center', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#333')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support