Ridgeline Plot
App Load Time by Device
Performance metrics with electric blue gradient theme
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(222)
devices = ['iPhone 15', 'Pixel 8', 'Galaxy S24', 'iPad Pro', 'MacBook', 'Windows PC']
colors = ['#276CF5', '#4927F5', '#5314E6', '#27D3F5', '#6CF527', '#F5B027']
data = {
'iPhone 15': np.random.lognormal(0.5, 0.3, 500),
'Pixel 8': np.random.lognormal(0.6, 0.35, 500),
'Galaxy S24': np.random.lognormal(0.55, 0.32, 500),
'iPad Pro': np.random.lognormal(0.4, 0.25, 500),
'MacBook': np.random.lognormal(0.3, 0.2, 500),
'Windows PC': np.random.lognormal(0.7, 0.4, 500)
}
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
overlap = 1.6
x_range = np.linspace(0, 6, 300)
for i, (device, time) in enumerate(data.items()):
time = np.clip(time, 0, 6)
kde = stats.gaussian_kde(time, bw_method=0.3)
y = kde(x_range) * 3.5
baseline = i * overlap
ax.fill_between(x_range, baseline, y + baseline, alpha=0.7, color=colors[i])
ax.plot(x_range, y + baseline, color=colors[i], linewidth=2.5)
ax.text(-0.2, baseline + 0.12, device, fontsize=10, color='#1f2937',
ha='right', va='bottom', fontweight='600')
ax.set_xlim(-2.5, 6)
ax.set_ylim(-0.3, len(devices) * overlap + 1.8)
ax.set_xlabel('Load Time (seconds)', fontsize=12, color='#374151', fontweight='500')
ax.set_title('App Load Time by Device', fontsize=16, color='#1f2937', fontweight='bold', pad=20)
ax.tick_params(axis='x', colors='#374151', labelsize=10)
ax.tick_params(axis='y', left=False, labelleft=False)
ax.spines['bottom'].set_color('#e5e7eb')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕