Ridgeline Plot
App Screen Time by Category
Daily app usage distributions across different categories
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(42)
categories = ['Social Media', 'Entertainment', 'Productivity', 'Games', 'News', 'Shopping']
time_means = [95, 75, 45, 55, 25, 20]
time_stds = [35, 30, 20, 25, 12, 10]
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
colors = ['#F5276C', '#F54927', '#27D3F5', '#6CF527', '#4927F5', '#F5B027']
x = np.linspace(0, 200, 200)
overlap = 2.2
for i, (cat, mean, std, color) in enumerate(zip(categories, time_means, time_stds, colors)):
data = np.random.gamma(mean/10, 10, 1000)
kde = stats.gaussian_kde(data)
y = kde(x) * 10
y_offset = i * overlap
ax.fill_between(x, y_offset, y + y_offset, alpha=0.85, color=color, edgecolor='#374151', linewidth=0.8)
ax.text(-8, y_offset + 0.3, cat, fontsize=10, color='#1f2937', va='center', ha='right', fontweight='500')
ax.set_xlim(-50, 200)
ax.set_ylim(-0.5, len(categories) * overlap + 2)
ax.set_xlabel('Daily Screen Time (minutes)', color='#1f2937', fontsize=11, fontweight='500')
ax.set_title('App Screen Time by Category', color='#1f2937', fontsize=14, fontweight='bold', pad=20)
ax.tick_params(colors='#374151', labelsize=9)
ax.set_yticks([])
for spine in ax.spines.values():
spine.set_visible(False)
ax.spines['bottom'].set_visible(True)
ax.spines['bottom'].set_color('#e5e7eb')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕