Linear Regression Plot

Arrhenius Reaction Rate

Chemical kinetics temperature dependence with activation energy

Output
Arrhenius Reaction Rate
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats

np.random.seed(777)

# Arrhenius data
temp = np.linspace(280, 350, 50)  # Kelvin
inv_temp = 1000 / temp
Ea = 50  # kJ/mol
A = 1e10
k = A * np.exp(-Ea * 1000 / (8.314 * temp)) * np.exp(np.random.normal(0, 0.15, 50))

log_k = np.log(k)
slope, intercept, r_value, _, _ = stats.linregress(inv_temp, log_k)

x_fit = np.linspace(2.85, 3.6, 100)
y_fit = slope * x_fit + intercept

fig, ax = plt.subplots(figsize=(10, 7), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

ax.yaxis.grid(True, color='#f0f0f0', linewidth=1, zorder=1)
ax.xaxis.grid(True, color='#f0f0f0', linewidth=1, zorder=1)

ax.fill_between(x_fit, y_fit - 0.3, y_fit + 0.3, color='#F5276C', alpha=0.1, linewidth=0, zorder=2)
ax.plot(x_fit, y_fit, color='#F5276C', linewidth=2.5, zorder=3)
ax.scatter(inv_temp, log_k, c='#27D3F5', s=60, alpha=0.85, edgecolors='white', linewidths=0.6, zorder=4)

# Activation energy from slope
Ea_calc = -slope * 8.314 / 1000
ax.text(0.03, 0.05, f'Ea = {Ea_calc:.1f} kJ/mol\nR² = {r_value**2:.4f}',
        transform=ax.transAxes, fontsize=10, color='#555555', ha='left', va='bottom',
        family='monospace', bbox=dict(boxstyle='round,pad=0.5', facecolor='white', edgecolor='#dddddd'))

for spine in ['top', 'right']:
    ax.spines[spine].set_visible(False)
for spine in ['bottom', 'left']:
    ax.spines[spine].set_color('#cccccc')

ax.set_xlabel('1000/T (K⁻¹)', fontsize=12, color='#333333', fontweight='500', labelpad=10)
ax.set_ylabel('ln(k)', fontsize=12, color='#333333', fontweight='500', labelpad=10)
ax.set_title('Arrhenius Plot', fontsize=15, color='#1a1a1a', fontweight='bold', pad=20, loc='left')
ax.tick_params(colors='#666666', labelsize=10, length=0)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support