Faceted Scatter Plot

Athlete Performance by Sport

Training load vs performance regression across athletic disciplines

Output
Athlete Performance by Sport
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

np.random.seed(654)

sports = ['Swimming', 'Cycling', 'Running', 'Rowing']
data = []
for sport in sports:
    n = 38
    training_hours = np.random.uniform(5, 30, n)
    gains = {'Swimming': 2.8, 'Cycling': 2.5, 'Running': 3.0, 'Rowing': 2.6}
    performance = gains[sport] * np.sqrt(training_hours) + np.random.normal(0, 1.5, n)
    for t, p in zip(training_hours, performance):
        data.append({'Training Hours/Week': t, 'Performance Gain (%)': p, 'Sport': sport})

df = pd.DataFrame(data)

plt.style.use('dark_background')
sns.set_style("darkgrid", {
    'axes.facecolor': '#0a0a0f',
    'figure.facecolor': '#0a0a0f',
    'grid.color': '#333333'
})

palette = ['#27D3F5', '#F5276C', '#6CF527', '#F5D327']

g = sns.lmplot(
    data=df,
    x='Training Hours/Week',
    y='Performance Gain (%)',
    hue='Sport',
    col='Sport',
    col_wrap=2,
    height=3.5,
    aspect=1.2,
    palette=palette,
    scatter_kws={'alpha': 0.75, 's': 55, 'edgecolor': 'white', 'linewidths': 0.4},
    line_kws={'linewidth': 2.5},
    ci=95
)

g.fig.set_facecolor('#0a0a0f')
for ax in g.axes.flat:
    ax.set_facecolor('#0a0a0f')
    for spine in ax.spines.values():
        spine.set_color('#333333')

g.fig.suptitle('Training Response by Discipline', fontsize=14, fontweight='bold', color='white', y=1.02)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support