Faceted Scatter Plot
Athlete Performance by Sport
Training load vs performance regression across athletic disciplines
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(654)
sports = ['Swimming', 'Cycling', 'Running', 'Rowing']
data = []
for sport in sports:
n = 38
training_hours = np.random.uniform(5, 30, n)
gains = {'Swimming': 2.8, 'Cycling': 2.5, 'Running': 3.0, 'Rowing': 2.6}
performance = gains[sport] * np.sqrt(training_hours) + np.random.normal(0, 1.5, n)
for t, p in zip(training_hours, performance):
data.append({'Training Hours/Week': t, 'Performance Gain (%)': p, 'Sport': sport})
df = pd.DataFrame(data)
plt.style.use('dark_background')
sns.set_style("darkgrid", {
'axes.facecolor': '#0a0a0f',
'figure.facecolor': '#0a0a0f',
'grid.color': '#333333'
})
palette = ['#27D3F5', '#F5276C', '#6CF527', '#F5D327']
g = sns.lmplot(
data=df,
x='Training Hours/Week',
y='Performance Gain (%)',
hue='Sport',
col='Sport',
col_wrap=2,
height=3.5,
aspect=1.2,
palette=palette,
scatter_kws={'alpha': 0.75, 's': 55, 'edgecolor': 'white', 'linewidths': 0.4},
line_kws={'linewidth': 2.5},
ci=95
)
g.fig.set_facecolor('#0a0a0f')
for ax in g.axes.flat:
ax.set_facecolor('#0a0a0f')
for spine in ax.spines.values():
spine.set_color('#333333')
g.fig.suptitle('Training Response by Discipline', fontsize=14, fontweight='bold', color='white', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Faceted Scatter Plot examples
☕