Raincloud Plot

Audio Streaming Quality Raincloud

Distribution of audio quality scores across music streaming platforms.

Output
Audio Streaming Quality Raincloud
Python
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

np.random.seed(888)

# Audio quality score (perceptual, 0-100)
spotify = np.random.normal(78, 6, 100)
apple = np.random.normal(85, 5, 95)
tidal = np.random.normal(92, 3, 80)
amazon = np.random.normal(82, 5.5, 90)

spotify = np.clip(spotify, 60, 92)
apple = np.clip(apple, 70, 96)
tidal = np.clip(tidal, 82, 100)
amazon = np.clip(amazon, 65, 94)

F_stat, p_value = stats.f_oneway(spotify, apple, tidal, amazon)

BG_COLOR = "#0a0a0f"
COLOR_SCALE = ["#6CF527", "#F5276C", "#27D3F5", "#F5B027"]

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

y_data = [spotify, apple, tidal, amazon]
positions = [0, 1, 2, 3]
labels = ["Spotify", "Apple Music", "Tidal", "Amazon HD"]

for h in [70, 80, 90]:
    ax.axhline(h, color='#333333', ls=(0, (5, 5)), alpha=0.5, zorder=0)

# Quality tiers
ax.axhspan(90, 100, alpha=0.08, color='#22c55e')
ax.text(3.55, 95, "Hi-Res", color='#22c55e', fontsize=9, va='center')
ax.text(3.55, 83, "CD Quality", color='#fbbf24', fontsize=9, va='center')

violins = ax.violinplot(y_data, positions=positions, widths=0.5, 
                         bw_method="silverman", showmeans=False, 
                         showmedians=False, showextrema=False)
for pc in violins["bodies"]:
    pc.set_facecolor("none")
    pc.set_edgecolor("white")
    pc.set_linewidth(1.8)

bp = ax.boxplot(y_data, positions=positions, showfliers=False, showcaps=False,
                medianprops=dict(linewidth=3, color='#F5D327'),
                whiskerprops=dict(linewidth=2, color='#555555'),
                boxprops=dict(linewidth=2, color='#555555'))

for i, (y, color) in enumerate(zip(y_data, COLOR_SCALE)):
    x_jitter = np.array([i] * len(y)) + stats.t(df=6, scale=0.04).rvs(len(y))
    ax.scatter(x_jitter, y, s=50, color=color, alpha=0.5, zorder=2)

means = [y.mean() for y in y_data]
for i, (mean, color) in enumerate(zip(means, COLOR_SCALE)):
    ax.scatter(i, mean, s=180, color='#C82909', zorder=5, edgecolors='white', linewidths=2)
    ax.plot([i, i + 0.28], [mean, mean], ls="dashdot", color="white", zorder=3, lw=1.5)
    ax.text(i + 0.3, mean, f"μ={mean:.1f}", fontsize=10, va="center", color='white',
            bbox=dict(facecolor=BG_COLOR, edgecolor=color, boxstyle="round,pad=0.15", lw=2))

# Bitrate annotations
bitrates = ["320kbps", "256kbps AAC", "1411kbps", "850kbps"]
for i, (br, color) in enumerate(zip(bitrates, COLOR_SCALE)):
    ax.text(i, 57, br, ha='center', fontsize=9, color=color)

ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
ax.spines["left"].set_color('#444444')
ax.spines["bottom"].set_color('#444444')
ax.tick_params(colors='#888888', length=0)

xlabels = [f"{l}\n(n={len(y_data[i])})" for i, l in enumerate(labels)]
ax.set_xticks(positions)
ax.set_xticklabels(xlabels, size=11, color='white')
ax.set_ylabel("Perceptual Audio Quality Score", size=14, color='white', fontweight='bold')

ax.set_title("Audio Streaming Quality Analysis", fontsize=14, color="white", fontweight="bold", pad=20)


ax.set_ylim(55, 102)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support