Correlogram

Automotive Engine Correlogram

Automotive correlogram of engine metrics by fuel type

Output
Automotive Engine Correlogram
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

np.random.seed(987)

n = 170
fuel = np.random.choice(['Gasoline', 'Diesel', 'Hybrid'], n)
data = {
    'MPG': np.where(fuel == 'Hybrid', np.random.normal(50, 8, n),
                   np.where(fuel == 'Diesel', np.random.normal(35, 5, n), np.random.normal(28, 6, n))),
    'HP': np.where(fuel == 'Gasoline', np.random.normal(250, 60, n),
                  np.where(fuel == 'Diesel', np.random.normal(200, 40, n), np.random.normal(180, 30, n))),
    'Torque': np.where(fuel == 'Diesel', np.random.normal(350, 70, n),
                      np.where(fuel == 'Gasoline', np.random.normal(270, 50, n), np.random.normal(220, 40, n))),
    'Weight (lbs)': np.where(fuel == 'Hybrid', np.random.normal(3800, 300, n),
                            np.where(fuel == 'Diesel', np.random.normal(4200, 400, n), np.random.normal(3500, 350, n))),
    'Fuel': fuel
}
df = pd.DataFrame(data)

sns.set_style("whitegrid", {'axes.facecolor': '#ffffff', 'figure.facecolor': '#ffffff', 'grid.color': '#eeeeee'})

palette = {'Gasoline': '#F54927', 'Diesel': '#4927F5', 'Hybrid': '#6CF527'}

g = sns.pairplot(
    df,
    hue='Fuel',
    palette=palette,
    height=2,
    kind='scatter',
    diag_kind='kde',
    markers=['o', 's', 'D'],
    plot_kws={'alpha': 0.75, 's': 55, 'edgecolor': 'white', 'linewidths': 0.6},
    diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)

g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
    if ax:
        ax.set_facecolor('#ffffff')
        for spine in ax.spines.values():
            spine.set_color('#dddddd')
        ax.tick_params(colors='#666666')
        ax.xaxis.label.set_color('#333333')
        ax.yaxis.label.set_color('#333333')

g.fig.suptitle('Automotive Performance Metrics', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support