Clustermap
Automotive Performance Matrix
Vehicle specifications clustering with cylinder grouping
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
np.random.seed(42)
# Simulated automotive data
cars = ['Model_' + chr(65+i) for i in range(20)]
metrics = ['MPG', 'HP', 'Weight', 'Accel', 'Disp', 'Torque', 'Price', 'Range']
data = np.random.rand(20, 8)
# Add structure
data[:7, [1, 4, 5]] += 0.5 # High performance cars
data[7:14, [0, 7]] += 0.5 # Efficient cars
data[14:, [2, 6]] += 0.5 # Heavy/expensive cars
df = pd.DataFrame(data, index=cars, columns=metrics)
# Cylinder groups
cylinders = [8]*7 + [4]*7 + [6]*6
cyl_palette = {4: '#6CF527', 6: '#F5B027', 8: '#F5276C'}
row_colors = pd.Series(cylinders, index=cars).map(cyl_palette)
# NEON blue-pink colormap
neon_cmap = LinearSegmentedColormap.from_list('neon_bp', ['#0a0a0f', '#4927F5', '#F5276C', '#F5B027'])
g = sns.clustermap(df, cmap=neon_cmap, row_colors=row_colors,
standard_scale=1, method='average',
linewidths=0.3, linecolor='#1a1a2e',
figsize=(8, 7), dendrogram_ratio=(0.12, 0.12),
cbar_pos=(0.01, 0.08, 0.008, 0.12),
tree_kws={'linewidths': 1.5, 'colors': '#27D3F5'})
g.fig.patch.set_facecolor('#0a0a0f')
g.ax_heatmap.set_facecolor('#0a0a0f')
g.ax_heatmap.tick_params(colors='white', labelsize=8)
for ax in [g.ax_row_dendrogram, g.ax_col_dendrogram]:
ax.set_facecolor('#0a0a0f')
g.fig.suptitle('Automotive Performance Clustering', color='white', fontsize=14, fontweight='bold', y=1.02)
plt.show()
Library
Matplotlib
Category
Heatmaps & Density
More Clustermap examples
☕