Correlogram
Battery Cell Characteristics
Energy storage correlogram across lithium-ion chemistries
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(222)
n = 160
chemistry = np.random.choice(['LFP', 'NMC', 'NCA'], n)
data = {
'Capacity (Ah)': np.where(chemistry == 'NCA', np.random.normal(5, 0.5, n),
np.where(chemistry == 'NMC', np.random.normal(4.5, 0.4, n), np.random.normal(3.5, 0.3, n))),
'Energy (Wh)': np.where(chemistry == 'NCA', np.random.normal(18, 2, n),
np.where(chemistry == 'NMC', np.random.normal(16, 1.8, n), np.random.normal(11, 1, n))),
'Cycles': np.where(chemistry == 'LFP', np.random.normal(3000, 500, n),
np.where(chemistry == 'NMC', np.random.normal(1500, 300, n), np.random.normal(1000, 200, n))),
'C-Rate': np.random.normal(2, 0.5, n),
'Type': chemistry
}
df = pd.DataFrame(data)
plt.style.use('dark_background')
sns.set_style("darkgrid", {'axes.facecolor': '#0a0a0f', 'figure.facecolor': '#0a0a0f', 'grid.color': '#333333'})
palette = {'LFP': '#6CF527', 'NMC': '#27D3F5', 'NCA': '#F5B027'}
g = sns.pairplot(
df,
hue='Type',
palette=palette,
height=2,
kind='reg',
diag_kind='kde',
markers=['o', 's', 'D'],
plot_kws={'scatter_kws': {'alpha': 0.65, 's': 50, 'edgecolor': 'white', 'linewidths': 0.4}, 'line_kws': {'linewidth': 2}},
diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)
g.fig.set_facecolor('#0a0a0f')
for ax in g.axes.flat:
if ax:
ax.set_facecolor('#0a0a0f')
for spine in ax.spines.values():
spine.set_color('#333333')
ax.tick_params(colors='#888888')
ax.xaxis.label.set_color('white')
ax.yaxis.label.set_color('white')
g.fig.suptitle('Battery Chemistry Comparison', fontsize=14, fontweight='bold', color='white', y=1.02)
plt.setp(g._legend.get_title(), color='white')
plt.setp(g._legend.get_texts(), color='white')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Correlogram examples
☕