KDE Plot

Battery Life Distribution KDE

Density distribution of smartphone battery life by brand

Output
Battery Life Distribution KDE
Python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde

np.random.seed(1414)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'
GRID_COLOR = '#e5e7eb'

# Screen-on time in hours
brand_a = np.random.normal(8.5, 1.2, 400)
brand_b = np.random.normal(7.8, 1.5, 400)
brand_c = np.random.normal(9.2, 1.0, 400)

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

x_range = np.linspace(4, 14, 500)

for data, color, label in [(brand_a, '#276CF5', 'Brand A'), 
                            (brand_b, '#6CF527', 'Brand B'),
                            (brand_c, '#F5276C', 'Brand C')]:
    kde = gaussian_kde(data)
    density = kde(x_range)
    ax.plot(x_range, density, color=color, linewidth=2.5, label=label)
    ax.fill_between(x_range, density, alpha=0.25, color=color)

ax.axvline(8, color='#F5B027', linestyle='--', alpha=0.7, linewidth=2)
ax.text(8.1, ax.get_ylim()[1]*0.85, '8hr Target', color='#F5B027', fontsize=10)

ax.set_xlabel('Screen-On Time (hours)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Density', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Smartphone Battery Life Distribution', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors=TEXT_COLOR, labelsize=10)
for spine in ax.spines.values():
    spine.set_color(GRID_COLOR)
ax.yaxis.grid(True, color=GRID_COLOR, linewidth=0.5, alpha=0.7)
ax.legend(facecolor=BG_COLOR, edgecolor=GRID_COLOR, labelcolor=TEXT_COLOR, fontsize=10)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support