Boxplot

Boxplot with Outliers

Distribution with outlier points.

Output
Boxplot with Outliers
Python
import matplotlib.pyplot as plt
import numpy as np

COLORS = {'box': '#10B981', 'outlier': '#EF4444', 'median': '#FFFFFF', 'background': '#FFFFFF', 'text': '#1E293B', 'text_muted': '#64748B', 'grid': '#F1F5F9'}

np.random.seed(42)
data = [np.concatenate([np.random.normal(50, 8, 95), [20, 85, 90]]) for _ in range(4)]

fig, ax = plt.subplots(figsize=(10, 6), dpi=100)
ax.set_facecolor(COLORS['background'])
fig.patch.set_facecolor(COLORS['background'])

bp = ax.boxplot(data, widths=0.5, patch_artist=True,
                medianprops=dict(color=COLORS['median'], linewidth=2),
                boxprops=dict(facecolor=COLORS['box'], edgecolor='white', linewidth=1),
                whiskerprops=dict(color=COLORS['box'], linewidth=1.5),
                capprops=dict(color=COLORS['box'], linewidth=1.5),
                flierprops=dict(marker='o', markerfacecolor=COLORS['outlier'], markersize=6, alpha=0.7))

ax.set_xticklabels(['Q1', 'Q2', 'Q3', 'Q4'])
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color(COLORS['grid'])
ax.spines['bottom'].set_color(COLORS['grid'])
ax.yaxis.grid(True, color=COLORS['grid'], linewidth=1, zorder=0)
ax.set_axisbelow(True)
ax.tick_params(axis='both', colors=COLORS['text_muted'], labelsize=9, length=0, pad=8)
ax.set_ylabel('Score', fontsize=10, color=COLORS['text'], labelpad=10)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support