Contour Plot

Branin Function Optimization Landscape

Classic Branin optimization test function with three global minima marked, using green to coral colormap on light background.

Output
Branin Function Optimization Landscape
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

# Branin function (optimization benchmark)
x = np.linspace(-5, 10, 200)
y = np.linspace(0, 15, 200)
X, Y = np.meshgrid(x, y)

a = 1
b = 5.1 / (4 * np.pi**2)
c = 5 / np.pi
r = 6
s = 10
t = 1 / (8 * np.pi)

Z = a * (Y - b * X**2 + c * X - r)**2 + s * (1 - t) * np.cos(X) + s

fig, ax = plt.subplots(figsize=(10, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

# Custom colormap - green to coral
colors = ['#dcfce7', '#22c55e', '#F5B027', '#F5276C']
cmap = LinearSegmentedColormap.from_list('green_coral', colors, N=256)

cs = ax.contourf(X, Y, Z, levels=35, cmap=cmap)
ax.contour(X, Y, Z, levels=20, colors='#374151', linewidths=0.4, alpha=0.5)

cbar = plt.colorbar(cs, ax=ax, pad=0.02)
cbar.set_label('f(x, y)', color='#374151', fontsize=11)
cbar.ax.tick_params(colors='#6b7280', labelsize=9)

# Mark global minima
minima = [(-np.pi, 12.275), (np.pi, 2.275), (9.42478, 2.475)]
for mx, my in minima:
    ax.scatter(mx, my, color='#5314E6', s=80, marker='*', zorder=5, edgecolor='white', linewidth=1)

ax.set_xlabel('x', fontsize=11, color='#374151')
ax.set_ylabel('y', fontsize=11, color='#374151')
ax.set_title('Branin Function Optimization Landscape', fontsize=14, color='#1f2937', fontweight='bold', pad=15)
ax.tick_params(colors='#6b7280', labelsize=9)
for spine in ax.spines.values():
    spine.set_color('#d1d5db')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support