ANOVA Violin Plot
Browser Performance ANOVA
Comparing website rendering speeds across different web browsers.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
np.random.seed(1919)
# Page load time in seconds
chrome = np.random.lognormal(0.4, 0.3, 150)
firefox = np.random.lognormal(0.5, 0.35, 150)
safari = np.random.lognormal(0.35, 0.25, 150)
edge = np.random.lognormal(0.45, 0.32, 150)
# Clip for realistic values
chrome = np.clip(chrome, 0.5, 8)
firefox = np.clip(firefox, 0.5, 10)
safari = np.clip(safari, 0.4, 6)
edge = np.clip(edge, 0.5, 9)
F_stat, p_value = stats.f_oneway(chrome, firefox, safari, edge)
fig, ax = plt.subplots(figsize=(12, 7), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
colors = ['#F5B027', '#F5276C', '#27D3F5', '#276CF5']
parts = ax.violinplot([chrome, firefox, safari, edge],
positions=[1, 2, 3, 4], showmeans=True, showmedians=True, widths=0.7)
for i, pc in enumerate(parts['bodies']):
pc.set_facecolor(colors[i])
pc.set_alpha(0.6)
pc.set_edgecolor(colors[i])
pc.set_linewidth(2)
parts['cmeans'].set_color('#6CF527')
parts['cmeans'].set_linewidth(2.5)
parts['cmedians'].set_color('#1f2937')
for partname in ['cbars', 'cmins', 'cmaxes']:
parts[partname].set_color('#9ca3af')
# Performance thresholds
ax.axhline(y=2.0, color='#22c55e', linestyle='--', alpha=0.7, linewidth=1.5)
ax.axhline(y=4.0, color='#f97316', linestyle='--', alpha=0.7, linewidth=1.5)
ax.text(4.45, 2.0, 'Good', fontsize=8, color='#22c55e', va='center')
ax.text(4.45, 4.0, 'Slow', fontsize=8, color='#f97316', va='center')
# Zone coloring
ax.axhspan(0, 2, alpha=0.08, color='#22c55e')
ax.axhspan(2, 4, alpha=0.05, color='#fbbf24')
labels = ['Chrome', 'Firefox', 'Safari', 'Edge']
means = [chrome.mean(), firefox.mean(), safari.mean(), edge.mean()]
# Market share and mean at bottom
market_share = ['65%', '8%', '18%', '5%']
for i, (share, mean, color) in enumerate(zip(market_share, means, colors)):
ax.text(i+1, -0.8, f'{share} | μ={mean:.2f}s', ha='center', fontsize=9, color=color)
# Stats at top
stats_text = f"ANOVA: F={F_stat:.2f}, p={p_value:.4f} | Fastest: Safari (μ={safari.mean():.2f}s)"
bbox = dict(boxstyle="round,pad=0.3", facecolor='#eff6ff', edgecolor='#276CF5', lw=2)
ax.text(0.5, 1.02, stats_text, transform=ax.transAxes, fontsize=9, color='#1f2937',
ha='center', va='bottom', fontfamily='monospace', bbox=bbox)
ax.set_xticks([1, 2, 3, 4])
ax.set_xticklabels(labels, fontsize=11, color='#1f2937')
ax.set_ylabel('Page Load Time (seconds)', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Web Browser Performance Comparison\nCore Web Vitals Benchmark',
fontsize=14, color='#1f2937', fontweight='bold', pad=25)
ax.tick_params(colors='#374151')
for spine in ax.spines.values():
spine.set_color('#e5e7eb')
ax.yaxis.grid(True, color='#f3f4f6', linewidth=0.8)
ax.set_axisbelow(True)
ax.set_ylim(-1.2, 10)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More ANOVA Violin Plot examples
☕