Correlogram
Chip Fabrication Correlogram
Manufacturing correlogram of chip parameters by process node
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(333)
n = 160
node = np.random.choice(['7nm', '14nm', '28nm'], n)
data = {
'Yield (%)': np.where(node == '28nm', np.random.normal(92, 3, n),
np.where(node == '14nm', np.random.normal(85, 5, n), np.random.normal(75, 8, n))),
'Defects/cm2': np.where(node == '7nm', np.random.normal(0.15, 0.05, n),
np.where(node == '14nm', np.random.normal(0.08, 0.03, n), np.random.normal(0.04, 0.02, n))),
'Power (W)': np.where(node == '7nm', np.random.normal(5, 1.5, n),
np.where(node == '14nm', np.random.normal(12, 3, n), np.random.normal(25, 5, n))),
'Clock (GHz)': np.where(node == '7nm', np.random.normal(4, 0.5, n),
np.where(node == '14nm', np.random.normal(3.5, 0.4, n), np.random.normal(3, 0.3, n))),
'Node': node
}
df = pd.DataFrame(data)
sns.set_style("whitegrid", {'axes.facecolor': '#ffffff', 'figure.facecolor': '#ffffff', 'grid.color': '#eeeeee'})
palette = {'7nm': '#5314E6', '14nm': '#27D3F5', '28nm': '#6CF527'}
g = sns.pairplot(
df,
hue='Node',
palette=palette,
height=2,
kind='scatter',
diag_kind='hist',
markers=['D', 'o', 's'],
plot_kws={'alpha': 0.75, 's': 55, 'edgecolor': 'white', 'linewidths': 0.6},
diag_kws={'alpha': 0.6, 'edgecolor': 'white', 'linewidth': 0.5}
)
g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
if ax:
ax.set_facecolor('#ffffff')
for spine in ax.spines.values():
spine.set_color('#dddddd')
ax.tick_params(colors='#666666')
ax.xaxis.label.set_color('#333333')
ax.yaxis.label.set_color('#333333')
g.fig.suptitle('Fab Process Comparison', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Correlogram examples
☕