Correlogram

Chip Fabrication Correlogram

Manufacturing correlogram of chip parameters by process node

Output
Chip Fabrication Correlogram
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

np.random.seed(333)

n = 160
node = np.random.choice(['7nm', '14nm', '28nm'], n)
data = {
    'Yield (%)': np.where(node == '28nm', np.random.normal(92, 3, n),
                         np.where(node == '14nm', np.random.normal(85, 5, n), np.random.normal(75, 8, n))),
    'Defects/cm2': np.where(node == '7nm', np.random.normal(0.15, 0.05, n),
                           np.where(node == '14nm', np.random.normal(0.08, 0.03, n), np.random.normal(0.04, 0.02, n))),
    'Power (W)': np.where(node == '7nm', np.random.normal(5, 1.5, n),
                         np.where(node == '14nm', np.random.normal(12, 3, n), np.random.normal(25, 5, n))),
    'Clock (GHz)': np.where(node == '7nm', np.random.normal(4, 0.5, n),
                           np.where(node == '14nm', np.random.normal(3.5, 0.4, n), np.random.normal(3, 0.3, n))),
    'Node': node
}
df = pd.DataFrame(data)

sns.set_style("whitegrid", {'axes.facecolor': '#ffffff', 'figure.facecolor': '#ffffff', 'grid.color': '#eeeeee'})

palette = {'7nm': '#5314E6', '14nm': '#27D3F5', '28nm': '#6CF527'}

g = sns.pairplot(
    df,
    hue='Node',
    palette=palette,
    height=2,
    kind='scatter',
    diag_kind='hist',
    markers=['D', 'o', 's'],
    plot_kws={'alpha': 0.75, 's': 55, 'edgecolor': 'white', 'linewidths': 0.6},
    diag_kws={'alpha': 0.6, 'edgecolor': 'white', 'linewidth': 0.5}
)

g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
    if ax:
        ax.set_facecolor('#ffffff')
        for spine in ax.spines.values():
            spine.set_color('#dddddd')
        ax.tick_params(colors='#666666')
        ax.xaxis.label.set_color('#333333')
        ax.yaxis.label.set_color('#333333')

g.fig.suptitle('Fab Process Comparison', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support