Calendar Heatmap

Cleaning Tasks Calendar

Daily cleaning tasks tracked in neon blue gradient for household management.

Output
Cleaning Tasks Calendar
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.patches as mpatches

np.random.seed(138)

days = 365
cleaning = np.random.poisson(2, days)
cleaning = np.clip(cleaning, 0, 8)
for i in range(days):
    if i % 7 >= 5:
        cleaning[i] = min(8, cleaning[i] + 2)

weeks = 53
data = np.zeros((7, weeks))
for i, val in enumerate(cleaning):
    week = i // 7
    day = i % 7
    if week < weeks:
        data[day, week] = val

# CLAUDE.md Neon Blue palette
colors_neon = ['#ffffff', '#e0edfc', '#78b4f9', '#276CF5']
cmap = LinearSegmentedColormap.from_list('neon_blue', colors_neon, N=256)

fig, ax = plt.subplots(figsize=(16, 4), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=0, vmax=8)

ax.set_yticks(range(7))
ax.set_yticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], fontsize=9, color='#374151')
ax.set_xticks(range(0, 52, 4))
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', ''], 
                   fontsize=9, color='#374151')

ax.set_title('Cleaning Tasks - Tasks Completed Per Day', fontsize=16, color='#1f2937', fontweight='bold', pad=15)

for i in range(8):
    ax.axhline(y=i-0.5, color='#e5e7eb', linewidth=0.5)
for i in range(weeks+1):
    ax.axvline(x=i-0.5, color='#e5e7eb', linewidth=0.5)

ax.tick_params(colors='#374151', length=0)
for spine in ax.spines.values():
    spine.set_visible(False)

legend_elements = [mpatches.Patch(facecolor=c, label=l, edgecolor='#d1d5db') 
                   for c, l in zip(colors_neon, ['0', '1-2', '3-5', '6+'])]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.15), ncol=4, 
          fontsize=8, facecolor='#f9fafb', edgecolor='#d1d5db', labelcolor='#374151', title='Tasks',
          title_fontsize=9)

total = int(np.sum(cleaning))
ax.annotate(f'{total} tasks completed', xy=(0.98, 1.1), xycoords='axes fraction',
            fontsize=11, color='#276CF5', ha='right', fontweight='bold')

plt.tight_layout()
plt.subplots_adjust(bottom=0.25)
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support