Heatmap
Climate Anomaly Matrix
Temperature anomalies by month and year
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
np.random.seed(42)
# Years and months
years = list(range(2000, 2025))
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
# Temperature anomalies with warming trend
anomalies = np.random.randn(len(years), 12) * 0.5
trend = np.linspace(-0.3, 0.8, len(years))
anomalies += trend[:, np.newaxis]
df = pd.DataFrame(anomalies, index=years, columns=months)
# Diverging colormap (blue cold, red warm)
neon_temp = LinearSegmentedColormap.from_list('neon_temp', ['#27D3F5', '#0a0a0f', '#F5276C'])
fig, ax = plt.subplots(figsize=(9, 6), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')
sns.heatmap(df, cmap=neon_temp, center=0, linewidths=0.5, linecolor='#1a1a2e',
cbar_kws={'shrink': 0.7, 'label': 'Anomaly (°C)'}, ax=ax)
ax.set_title('Global Temperature Anomalies (2000-2024)', color='white', fontsize=14, fontweight='bold', pad=15)
ax.set_xlabel('Month', color='white', fontsize=11)
ax.set_ylabel('Year', color='white', fontsize=11)
ax.tick_params(colors='#888888', labelsize=9)
# Colorbar styling
cbar = ax.collections[0].colorbar
cbar.ax.yaxis.set_tick_params(color='white')
cbar.ax.yaxis.label.set_color('white')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='white')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Heatmaps & Density
More Heatmap examples
☕