Heatmap

Climate Anomaly Matrix

Temperature anomalies by month and year

Output
Climate Anomaly Matrix
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(42)

# Years and months
years = list(range(2000, 2025))
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 
          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

# Temperature anomalies with warming trend
anomalies = np.random.randn(len(years), 12) * 0.5
trend = np.linspace(-0.3, 0.8, len(years))
anomalies += trend[:, np.newaxis]

df = pd.DataFrame(anomalies, index=years, columns=months)

# Diverging colormap (blue cold, red warm)
neon_temp = LinearSegmentedColormap.from_list('neon_temp', ['#27D3F5', '#0a0a0f', '#F5276C'])

fig, ax = plt.subplots(figsize=(9, 6), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')

sns.heatmap(df, cmap=neon_temp, center=0, linewidths=0.5, linecolor='#1a1a2e',
            cbar_kws={'shrink': 0.7, 'label': 'Anomaly (°C)'}, ax=ax)

ax.set_title('Global Temperature Anomalies (2000-2024)', color='white', fontsize=14, fontweight='bold', pad=15)
ax.set_xlabel('Month', color='white', fontsize=11)
ax.set_ylabel('Year', color='white', fontsize=11)
ax.tick_params(colors='#888888', labelsize=9)

# Colorbar styling
cbar = ax.collections[0].colorbar
cbar.ax.yaxis.set_tick_params(color='white')
cbar.ax.yaxis.label.set_color('white')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='white')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support