Horizon Chart

Climate Temperature Anomaly

Horizon chart visualizing temperature anomalies with warm orange for above-average and cool blue for below-average temps.

Output
Climate Temperature Anomaly
Python
import matplotlib.pyplot as plt
import numpy as np

COLORS = {
    'warm': ['#4d2600', '#994d00', '#F5B027'],  # Orange gradient
    'cool': ['#002040', '#004080', '#276CF5'],  # Blue gradient
    'background': '#0a0a0f',
    'text': '#ffffff',
}

np.random.seed(2024)
years = np.arange(1900, 2024)
# Climate warming trend
anomaly = 0.01 * (years - 1960) + 0.3 * np.sin(years * 0.1) + np.random.normal(0, 0.15, len(years))

fig, ax = plt.subplots(figsize=(14, 3), facecolor=COLORS['background'])
ax.set_facecolor(COLORS['background'])

band = 0.3

# Warm anomalies
ax.fill_between(years, 0, np.clip(anomaly, 0, band), color=COLORS['warm'][0])
ax.fill_between(years, 0, np.clip(anomaly - band, 0, band), color=COLORS['warm'][1])
ax.fill_between(years, 0, np.clip(anomaly - 2*band, 0, band), color=COLORS['warm'][2])

# Cool anomalies
ax.fill_between(years, 0, np.clip(anomaly, -band, 0), color=COLORS['cool'][0])
ax.fill_between(years, 0, np.clip(anomaly + band, -band, 0), color=COLORS['cool'][1])
ax.fill_between(years, 0, np.clip(anomaly + 2*band, -band, 0), color=COLORS['cool'][2])

ax.axhline(0, color='#555555', linewidth=0.5)
ax.set_xlim(1900, 2023)
ax.set_ylim(-0.35, 0.35)

ax.set_title('Global Temperature Anomaly (1900-2023)', color=COLORS['text'], fontsize=12, fontweight='bold', pad=10)
ax.set_xlabel('Year', color=COLORS['text'], fontsize=10)
ax.set_ylabel('Anomaly (°C)', color=COLORS['text'], fontsize=10)

for spine in ax.spines.values():
    spine.set_visible(False)
ax.tick_params(colors=COLORS['text'], labelsize=9)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support