Clustermap

Clinical Trial Biomarkers

Biomarker levels across patient cohorts in clinical study

Output
Clinical Trial Biomarkers
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(111)

biomarkers = ['CRP', 'IL-6', 'TNF-a', 'WBC', 'Platelets', 'Hemoglobin',
              'Creatinine', 'ALT', 'AST', 'Albumin', 'Glucose', 'HbA1c']
patients = [f'P{i:02d}' for i in range(1, 17)]

data = np.random.randn(12, 16)
data[:4, :6] -= 1.5
data[:3, 10:] += 2

df = pd.DataFrame(data, index=biomarkers, columns=patients)

response = ['Responder']*6 + ['Partial']*4 + ['Non-responder']*6
resp_palette = {'Responder': '#22c55e', 'Partial': '#f59e0b', 'Non-responder': '#ef4444'}
col_colors = pd.Series(response, index=patients).map(resp_palette)

light_cmap = LinearSegmentedColormap.from_list('clinical', ['#3b82f6', '#f8fafc', '#ef4444'])

g = sns.clustermap(df, cmap=light_cmap, center=0, col_colors=col_colors,
                   method='ward', metric='euclidean',
                   linewidths=0.5, linecolor='#e2e8f0',
                   figsize=(10, 8), dendrogram_ratio=(0.12, 0.12),
                   cbar_pos=(0.01, 0.08, 0.008, 0.12))

g.fig.patch.set_facecolor('#ffffff')
g.ax_heatmap.set_facecolor('#ffffff')
g.ax_heatmap.tick_params(colors='#1f2937', labelsize=8)
g.ax_row_dendrogram.set_facecolor('#ffffff')
g.ax_col_dendrogram.set_facecolor('#ffffff')
g.cax.tick_params(colors='#1f2937', labelsize=7)

g.fig.suptitle('Clinical Trial Biomarkers', color='#1f2937', fontsize=13, fontweight='bold', y=1.02)
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support