Hexbin Plot

Clinical Trial Response

Drug dosage vs patient response in pharmaceutical research.

Output
Clinical Trial Response
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(42)
n_patients = 6000

dosage = np.random.uniform(10, 200, n_patients)

optimal_dose = 100
response = 80 * np.exp(-((dosage - optimal_dose) / 50) ** 2)
response += np.random.normal(0, 10, n_patients)
response = np.clip(response, 0, 100)

fig, ax = plt.subplots(figsize=(10, 8), facecolor='#ffffff')
ax.set_facecolor('#fdf4ff')

colors = ['#fdf4ff', '#fae8ff', '#f5d0fe', '#f0abfc', '#e879f9', 
          '#d946ef', '#c026d3', '#a21caf', '#86198f', '#701a75']
cmap = LinearSegmentedColormap.from_list('fuchsia', colors, N=256)

hb = ax.hexbin(dosage, response, gridsize=35, cmap=cmap, mincnt=1,
               edgecolors='white', linewidths=0.3)

ax.axvline(x=100, color='#c026d3', linestyle='-', alpha=0.8, linewidth=2.5, label='Optimal Dose')
ax.axhline(y=60, color='#16a34a', linestyle='--', alpha=0.7, linewidth=2, label='Therapeutic Effect')

dose_curve = np.linspace(10, 200, 100)
response_curve = 80 * np.exp(-((dose_curve - 100) / 50) ** 2)
ax.plot(dose_curve, response_curve, '-', color='#86198f', linewidth=2.5, alpha=0.8, label='Dose-Response Curve')

cbar = plt.colorbar(hb, ax=ax, pad=0.02, shrink=0.85)
cbar.set_label('Patient Count', fontsize=11, color='#701a75', labelpad=10)
cbar.ax.yaxis.set_tick_params(color='#86198f')
cbar.outline.set_edgecolor('#f5d0fe')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#86198f', fontsize=9)

ax.set_xlabel('Dosage (mg)', fontsize=12, color='#701a75', fontweight='600', labelpad=12)
ax.set_ylabel('Response Score', fontsize=12, color='#701a75', fontweight='600', labelpad=12)
ax.set_title('Clinical Trial Dose-Response', fontsize=16, color='#4a044e', fontweight='700', pad=20)

ax.tick_params(colors='#86198f', labelsize=10, length=0)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#f5d0fe')
ax.spines['bottom'].set_color('#f5d0fe')

ax.legend(loc='upper right', fontsize=9, frameon=True, facecolor='white', 
          edgecolor='#f5d0fe', labelcolor='#701a75')
ax.grid(True, alpha=0.3, color='#f5d0fe', linestyle='-', linewidth=0.5)
ax.set_axisbelow(True)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support