Faceted Scatter Plot
Clinical Trial Response Rates
Clinical trial response rates across therapeutic interventions
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(999)
treatments = ['Standard', 'Experimental', 'Combination', 'Placebo']
data = []
for treat in treatments:
n = 42
dosage = np.random.uniform(10, 100, n)
efficacy = {'Standard': 0.6, 'Experimental': 0.75, 'Combination': 0.85, 'Placebo': 0.15}
response = efficacy[treat] * np.log(dosage + 1) * 10 + np.random.normal(0, 5, n)
response = np.clip(response, 0, 100)
for d, r in zip(dosage, response):
data.append({'Dosage (mg)': d, 'Response Score': r, 'Treatment': treat})
df = pd.DataFrame(data)
sns.set_style("whitegrid", {
'axes.facecolor': '#ffffff',
'figure.facecolor': '#ffffff',
'grid.color': '#eeeeee'
})
palette = ['#276CF5', '#F5276C', '#5314E6', '#888888']
g = sns.lmplot(
data=df,
x='Dosage (mg)',
y='Response Score',
hue='Treatment',
col='Treatment',
col_wrap=2,
height=3.5,
aspect=1.2,
palette=palette,
scatter_kws={'alpha': 0.7, 's': 50, 'edgecolor': 'white', 'linewidths': 0.6},
line_kws={'linewidth': 2.5},
ci=95
)
g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
ax.set_facecolor('#ffffff')
for spine in ax.spines.values():
spine.set_color('#dddddd')
g.fig.suptitle('Therapeutic Efficacy Comparison', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Faceted Scatter Plot examples
☕