Stream Graph

Cloud Provider Market Share Stream

Stream visualization of cloud computing market share evolution with neon colors.

Output
Cloud Provider Market Share Stream
Python
import matplotlib.pyplot as plt
import numpy as np

COLORS = {
    'background': '#0a0a0f',
    'text': '#ffffff',
    'grid': '#333333',
}

np.random.seed(202)
quarters = np.arange(0, 32)  # 8 years quarterly

# Cloud providers
aws = 35 + 0.2 * quarters + 3 * np.sin(quarters * np.pi / 8) + np.random.normal(0, 1, 32)
azure = 15 + 0.5 * quarters + 2 * np.cos(quarters * np.pi / 6) + np.random.normal(0, 1, 32)
gcp = 8 + 0.3 * quarters + np.random.normal(0, 1, 32)
alibaba = 5 + 0.2 * quarters + np.random.normal(0, 0.5, 32)
oracle = 3 + 0.1 * quarters + np.random.normal(0, 0.3, 32)
others = 15 - 0.1 * quarters + np.random.normal(0, 1, 32)

data = [np.clip(d, 1, None) for d in [aws, azure, gcp, alibaba, oracle, others]]
provider_colors = ['#FF9900', '#0089D6', '#4285F4', '#FF6A00', '#F80000', '#27F5B0']

fig, ax = plt.subplots(figsize=(14, 6), facecolor=COLORS['background'])
ax.set_facecolor(COLORS['background'])

ax.stackplot(quarters, *data, colors=provider_colors, alpha=0.85, baseline='sym',
             labels=['AWS', 'Azure', 'GCP', 'Alibaba', 'Oracle', 'Others'])

ax.axhline(0, color=COLORS['grid'], linewidth=0.5, alpha=0.5)
ax.set_xlim(0, 31)

ax.set_title('Cloud Provider Market Share (Quarterly)', color=COLORS['text'], fontsize=14, fontweight='bold', pad=15)
ax.set_xlabel('Quarter', color=COLORS['text'], fontsize=11)
ax.set_ylabel('Market Share (%)', color=COLORS['text'], fontsize=11)

ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.12), frameon=False, labelcolor=COLORS['text'], fontsize=9, ncol=5)

for spine in ax.spines.values():
    spine.set_visible(False)
ax.tick_params(colors=COLORS['text'], labelsize=9)

plt.tight_layout()
plt.subplots_adjust(bottom=0.18)
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support