Scatter Plot
Cluster Scatter
Three distinct clusters with glow effect using k-means-style grouping.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
# === STYLE CONFIG ===
COLORS = {
'cluster1': '#6366F1',
'cluster2': '#10B981',
'cluster3': '#F59E0B',
'background': '#FFFFFF',
'text': '#1E293B',
'text_muted': '#64748B',
'grid': '#F1F5F9',
}
# === DATA ===
np.random.seed(42)
# Three clusters
c1_x, c1_y = np.random.normal(3, 0.8, 25), np.random.normal(7, 0.8, 25)
c2_x, c2_y = np.random.normal(7, 1, 30), np.random.normal(3, 1, 30)
c3_x, c3_y = np.random.normal(5, 0.6, 20), np.random.normal(5, 0.6, 20)
# === FIGURE ===
fig, ax = plt.subplots(figsize=(10, 6), dpi=100)
ax.set_facecolor(COLORS['background'])
fig.patch.set_facecolor(COLORS['background'])
# === PLOT ===
for x, y, color, label in [
(c1_x, c1_y, COLORS['cluster1'], 'Cluster A'),
(c2_x, c2_y, COLORS['cluster2'], 'Cluster B'),
(c3_x, c3_y, COLORS['cluster3'], 'Cluster C'),
]:
# Glow
ax.scatter(x, y, s=200, c=color, alpha=0.1, zorder=1)
# Points
ax.scatter(x, y, s=80, c=color, alpha=0.8,
edgecolors='white', linewidths=1.5, label=label, zorder=3)
# === STYLING ===
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color(COLORS['grid'])
ax.spines['bottom'].set_color(COLORS['grid'])
ax.yaxis.grid(True, color=COLORS['grid'], linewidth=1)
ax.set_axisbelow(True)
ax.tick_params(axis='both', colors=COLORS['text_muted'], labelsize=9, length=0, pad=8)
ax.set_xlim(0, 10)
ax.set_ylim(0, 10)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.12),
ncol=3, frameon=False, fontsize=9, labelcolor=COLORS['text_muted'])
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Scatter Plot examples
☕