Raincloud Plot

CO2 Emissions by Vehicle Type

Carbon footprint distribution across transport modes

Output
CO2 Emissions by Vehicle Type
Python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import ptitprince as pt

np.random.seed(119)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'
COLORS = ['#6CF527', '#F5B027', '#F54927', '#9C2007']

types = ['EV', 'Hybrid', 'Gas', 'Diesel']
data = pd.DataFrame({
    'CO2': np.concatenate([
        np.random.gamma(2, 5, 80),
        np.random.gamma(4, 12, 90),
        np.random.gamma(6, 20, 100),
        np.random.gamma(7, 22, 85)
    ]),
    'Type': ['EV']*80 + ['Hybrid']*90 + ['Gas']*100 + ['Diesel']*85
})

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

pt.RainCloud(x='Type', y='CO2', data=data, palette=COLORS,
             bw=.2, width_viol=.6, ax=ax, orient='h', alpha=.65,
             dodge=True, pointplot=False, move=.2)

ax.set_xlabel('CO2 Emissions (g/km)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Vehicle Type', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Carbon Emissions by Vehicle Type', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#333')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support