Error Bar Chart
Coffee Bean Cupping Scores
Specialty coffee bean quality comparison using professional cupping scores.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(42)
# Coffee bean scoring data
attributes = ['Aroma', 'Flavor', 'Aftertaste', 'Acidity', 'Body', 'Balance']
ethiopian = np.array([8.5, 8.8, 8.2, 8.6, 7.8, 8.4])
colombian = np.array([8.2, 8.4, 8.0, 8.0, 8.5, 8.3])
brazilian = np.array([7.8, 8.0, 7.6, 7.5, 8.8, 8.0])
err = np.array([0.3, 0.25, 0.35, 0.3, 0.25, 0.3])
fig, ax = plt.subplots(figsize=(10, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
x = np.arange(len(attributes))
width = 0.25
ax.bar(x - width, ethiopian, width, yerr=err, label='Ethiopian Yirgacheffe',
color='#F5276C', edgecolor='#1f2937', capsize=3,
error_kw={'ecolor': '#374151', 'elinewidth': 1.5})
ax.bar(x, colombian, width, yerr=err, label='Colombian Supremo',
color='#F5B027', edgecolor='#1f2937', capsize=3,
error_kw={'ecolor': '#374151', 'elinewidth': 1.5})
ax.bar(x + width, brazilian, width, yerr=err, label='Brazilian Santos',
color='#27D3F5', edgecolor='#1f2937', capsize=3,
error_kw={'ecolor': '#374151', 'elinewidth': 1.5})
ax.axhline(y=8.0, color='#6CF527', linestyle='--', linewidth=1.5,
label='Specialty Grade (8.0)', alpha=0.7)
ax.set_xlabel('Attribute', fontsize=11, color='#374151', fontweight='500')
ax.set_ylabel('Cupping Score', fontsize=11, color='#374151', fontweight='500')
ax.set_title('Specialty Coffee Bean Cupping Scores', fontsize=14,
color='#1f2937', fontweight='bold', pad=15)
ax.set_xticks(x)
ax.set_xticklabels(attributes)
ax.legend(facecolor='#f8fafc', edgecolor='#d1d5db', fontsize=9, loc='lower right')
ax.tick_params(colors='#6b7280', labelsize=9)
ax.set_ylim(6.5, 9.5)
ax.grid(True, axis='y', alpha=0.3, color='#d1d5db')
for spine in ax.spines.values():
spine.set_color('#d1d5db')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Error Bar Chart examples
☕