KDE Plot

Coffee Bean Quality Score KDE

Density distribution of coffee cupping scores by origin region

Output
Coffee Bean Quality Score KDE
Python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde

np.random.seed(1212)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'
GRID_COLOR = '#e5e7eb'

# Cupping scores (0-100)
ethiopia = np.random.normal(86, 4, 300)
colombia = np.random.normal(84, 5, 300)
brazil = np.random.normal(82, 5, 300)

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

x_range = np.linspace(65, 100, 500)

for data, color, label in [(ethiopia, '#9C2007', 'Ethiopia'), 
                            (colombia, '#F5B027', 'Colombia'),
                            (brazil, '#6CF527', 'Brazil')]:
    kde = gaussian_kde(data)
    density = kde(x_range)
    ax.plot(x_range, density, color=color, linewidth=2.5, label=label)
    ax.fill_between(x_range, density, alpha=0.25, color=color)

ax.axvline(80, color='#4927F5', linestyle='--', alpha=0.7, linewidth=2)
ax.text(80.5, ax.get_ylim()[1]*0.85, 'Specialty', color='#4927F5', fontsize=10)

ax.set_xlabel('Cupping Score', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Density', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Coffee Quality Score by Origin', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors=TEXT_COLOR, labelsize=10)
for spine in ax.spines.values():
    spine.set_color(GRID_COLOR)
ax.yaxis.grid(True, color=GRID_COLOR, linewidth=0.5, alpha=0.7)
ax.legend(facecolor=BG_COLOR, edgecolor=GRID_COLOR, labelcolor=TEXT_COLOR, fontsize=10)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support