Correlogram
Coffee Origin Quality Matrix
Agricultural correlogram of coffee attributes by origin
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(111)
n = 150
origin = np.random.choice(['Ethiopian', 'Colombian', 'Brazilian'], n)
data = {
'Aroma': np.where(origin == 'Ethiopian', np.random.normal(8.5, 0.5, n),
np.where(origin == 'Colombian', np.random.normal(8, 0.6, n), np.random.normal(7.5, 0.5, n))),
'Acidity': np.where(origin == 'Ethiopian', np.random.normal(8.2, 0.6, n),
np.where(origin == 'Colombian', np.random.normal(7.5, 0.5, n), np.random.normal(6.8, 0.6, n))),
'Body': np.where(origin == 'Brazilian', np.random.normal(8, 0.5, n),
np.where(origin == 'Colombian', np.random.normal(7.8, 0.4, n), np.random.normal(7.2, 0.5, n))),
'Sweetness': np.random.normal(7.5, 0.6, n),
'Origin': origin
}
df = pd.DataFrame(data)
sns.set_style("whitegrid", {'axes.facecolor': '#ffffff', 'figure.facecolor': '#ffffff', 'grid.color': '#eeeeee'})
palette = {'Ethiopian': '#9C2007', 'Colombian': '#F5B027', 'Brazilian': '#6CF527'}
g = sns.pairplot(
df,
hue='Origin',
palette=palette,
height=2,
kind='reg',
diag_kind='kde',
markers=['o', 's', '^'],
plot_kws={'scatter_kws': {'alpha': 0.65, 's': 50, 'edgecolor': 'white', 'linewidths': 0.6}, 'line_kws': {'linewidth': 2}},
diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)
g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
if ax:
ax.set_facecolor('#ffffff')
for spine in ax.spines.values():
spine.set_color('#dddddd')
ax.tick_params(colors='#666666')
ax.xaxis.label.set_color('#333333')
ax.yaxis.label.set_color('#333333')
g.fig.suptitle('Specialty Coffee Cupping Scores', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Correlogram examples
☕