Line & Scatter
Cohort Retention Analysis
Multi-cohort retention curves with professional styling.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
# === STYLE CONFIG ===
COHORT_COLORS = ['#6366F1', '#8B5CF6', '#A855F7', '#D946EF']
COLORS = {
'background': '#FFFFFF',
'text': '#1E293B',
'text_muted': '#64748B',
'grid': '#F1F5F9',
}
# === DATA ===
weeks = np.arange(0, 9)
cohorts = {
'Q1 2024': [100, 68, 52, 41, 35, 31, 28, 26, 25],
'Q2 2024': [100, 72, 58, 48, 42, 38, 35, 33, None],
'Q3 2024': [100, 75, 62, 54, 48, 44, None, None, None],
'Q4 2024': [100, 78, 65, 58, None, None, None, None, None],
}
# === FIGURE ===
fig, ax = plt.subplots(figsize=(10, 6), dpi=100)
ax.set_facecolor(COLORS['background'])
fig.patch.set_facecolor(COLORS['background'])
# === PLOT ===
for (name, data), color in zip(cohorts.items(), COHORT_COLORS):
valid_data = [(w, d) for w, d in zip(weeks, data) if d is not None]
x_vals = [d[0] for d in valid_data]
y_vals = [d[1] for d in valid_data]
ax.plot(x_vals, y_vals, color=color, linewidth=2.5, label=name, zorder=2)
ax.scatter(x_vals, y_vals, color=color, s=40,
edgecolors='white', linewidths=1.5, zorder=3)
# End label
ax.annotate(f'{y_vals[-1]}%', xy=(x_vals[-1], y_vals[-1]),
xytext=(x_vals[-1] + 0.2, y_vals[-1]),
fontsize=9, color=color, fontweight='500')
# === AXES ===
ax.set_xlim(-0.5, 9)
ax.set_ylim(0, 110)
ax.set_xticks(weeks)
ax.set_xticklabels([f'W{w}' for w in weeks])
ax.set_xlabel('Week', fontsize=10, color=COLORS['text'], labelpad=10)
ax.set_ylabel('Retention Rate (%)', fontsize=10, color=COLORS['text'], labelpad=10)
# === STYLING ===
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color(COLORS['grid'])
ax.spines['bottom'].set_color(COLORS['grid'])
ax.yaxis.grid(True, color=COLORS['grid'], linewidth=1)
ax.set_axisbelow(True)
ax.tick_params(axis='both', colors=COLORS['text_muted'], labelsize=9, length=0, pad=8)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15),
ncol=4, frameon=False, fontsize=9, labelcolor=COLORS['text_muted'])
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Line & Scatter examples
☕