Scatter Plot
Connected Timeline
Time series comparison showing digital vs traditional market share evolution.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
# === STYLE CONFIG ===
COLORS = {
'primary': '#6366F1',
'secondary': '#EC4899',
'background': '#FFFFFF',
'text': '#1E293B',
'text_muted': '#64748B',
'grid': '#F1F5F9',
}
# === DATA ===
years = np.arange(2015, 2025)
metric_a = [20, 25, 28, 35, 42, 48, 55, 62, 70, 78]
metric_b = [80, 75, 70, 62, 55, 50, 45, 38, 32, 28]
# === FIGURE ===
fig, ax = plt.subplots(figsize=(10, 6), dpi=100)
ax.set_facecolor(COLORS['background'])
fig.patch.set_facecolor(COLORS['background'])
# === PLOT ===
# Lines with glow
for metrics, color, label in [(metric_a, COLORS['primary'], 'Digital'),
(metric_b, COLORS['secondary'], 'Traditional')]:
# Glow line
ax.plot(years, metrics, color=color, linewidth=8, alpha=0.15, zorder=1)
# Main line
ax.plot(years, metrics, color=color, linewidth=2.5, zorder=2)
# Points with glow
ax.scatter(years, metrics, s=150, c=color, alpha=0.2, zorder=3)
ax.scatter(years, metrics, s=60, c=color,
edgecolors='white', linewidths=2, label=label, zorder=4)
# Start/End annotations
for y, m, label in [(2015, metric_a[0], f'{metric_a[0]}%'),
(2024, metric_a[-1], f'{metric_a[-1]}%')]:
ax.annotate(label, (y, m), xytext=(0, 12), textcoords='offset points',
ha='center', fontsize=9, color=COLORS['primary'], fontweight='bold')
# === STYLING ===
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color(COLORS['grid'])
ax.spines['bottom'].set_color(COLORS['grid'])
ax.yaxis.grid(True, color=COLORS['grid'], linewidth=1)
ax.set_axisbelow(True)
ax.tick_params(axis='both', colors=COLORS['text_muted'], labelsize=9, length=0, pad=8)
ax.set_xlim(2014, 2025)
ax.set_ylim(0, 100)
ax.set_xlabel('Year', fontsize=10, color=COLORS['text'], labelpad=10)
ax.set_ylabel('Market Share (%)', fontsize=10, color=COLORS['text'], labelpad=10)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.12),
ncol=2, frameon=False, fontsize=9, labelcolor=COLORS['text_muted'])
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Scatter Plot examples
☕