Boxplot

Conversion Rate

A/B test results by variant.

Output
Conversion Rate
Python
import matplotlib.pyplot as plt
import numpy as np

COLORS = {'control': '#64748B', 'variant': '#10B981', 'median': '#FFFFFF', 'background': '#FFFFFF', 'text': '#1E293B', 'text_muted': '#64748B', 'grid': '#F1F5F9'}

np.random.seed(42)
control = np.random.beta(3, 20, 100) * 100
variant = np.random.beta(4, 20, 100) * 100

fig, ax = plt.subplots(figsize=(8, 6), dpi=100)
ax.set_facecolor(COLORS['background'])
fig.patch.set_facecolor(COLORS['background'])

bp = ax.boxplot([control, variant], widths=0.4, patch_artist=True, showfliers=False,
                medianprops=dict(color=COLORS['median'], linewidth=2))

bp['boxes'][0].set_facecolor(COLORS['control'])
bp['boxes'][1].set_facecolor(COLORS['variant'])
for box in bp['boxes']:
    box.set_edgecolor('white')

ax.set_xticklabels(['Control', 'Variant A'])
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color(COLORS['grid'])
ax.spines['bottom'].set_color(COLORS['grid'])
ax.yaxis.grid(True, color=COLORS['grid'], linewidth=1, zorder=0)
ax.set_axisbelow(True)
ax.tick_params(axis='both', colors=COLORS['text_muted'], labelsize=9, length=0, pad=8)
ax.set_ylabel('Conversion Rate (%)', fontsize=10, color=COLORS['text'], labelpad=10)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support