3D Scatter
Coral Reef Health Assessment
Marine biology survey showing coral coverage vs depth and temperature with health status.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(666)
# Coral reef monitoring
n_sites = 130
depth = np.random.uniform(2, 30, n_sites)
temperature = 26 - depth * 0.15 + np.random.normal(0, 1, n_sites)
coral_cover = 60 - depth * 0.8 - (temperature - 25)**2 + np.random.normal(0, 10, n_sites)
coral_cover = np.clip(coral_cover, 5, 90)
# Health status
health = np.where(coral_cover > 50, 'Healthy', np.where(coral_cover > 25, 'Stressed', 'Bleached'))
health_colors = {'Healthy': '#27F5B0', 'Stressed': '#F5B027', 'Bleached': '#F5276C'}
colors = [health_colors[h] for h in health]
fig = plt.figure(figsize=(10, 8), facecolor='#ffffff')
ax = fig.add_subplot(111, projection='3d', facecolor='#ffffff')
ax.scatter(depth, temperature, coral_cover, c=colors, s=60,
alpha=0.7, edgecolors='#374151', linewidths=0.3)
ax.set_xlabel('Depth (m)', color='#1f2937', fontsize=10)
ax.set_ylabel('Temperature (°C)', color='#1f2937', fontsize=10)
ax.set_zlabel('Coral Cover (%)', color='#1f2937', fontsize=10)
ax.set_title('Coral Reef Health Assessment', color='#1f2937', fontsize=14, fontweight='bold', pad=20)
ax.tick_params(colors='#6b7280', labelsize=8)
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis.pane.set_edgecolor('#e5e7eb')
ax.yaxis.pane.set_edgecolor('#e5e7eb')
ax.zaxis.pane.set_edgecolor('#e5e7eb')
ax.view_init(elev=20, azim=45)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
3D Charts
☕