Linear Regression Plot
CPU Clock Speed vs Power Consumption
Hardware performance and energy efficiency analysis
Output
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
np.random.seed(402)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'
n = 70
clock_speed = np.random.uniform(2.0, 5.5, n)
power = 15 * clock_speed**1.8 + np.random.normal(0, 15, n)
df = pd.DataFrame({'Clock Speed (GHz)': clock_speed, 'Power (W)': power})
fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)
sns.regplot(
data=df,
x='Clock Speed (GHz)',
y='Power (W)',
scatter_kws={'color': '#6CF527', 'alpha': 0.7, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
line_kws={'color': '#F5B027', 'linewidth': 2.5, 'linestyle': '-'},
ci=95,
ax=ax
)
for collection in ax.collections[1:]:
collection.set_facecolor('#F5B027')
collection.set_alpha(0.15)
corr = np.corrcoef(clock_speed, power)[0, 1]
ax.text(0.05, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
color='#F5B027', fontweight='bold', va='top',
bbox=dict(boxstyle='round,pad=0.3', facecolor='#1a1a2e', edgecolor='#333'))
ax.set_xlabel('Clock Speed (GHz)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Power Consumption (W)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('CPU Performance vs Power', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#333')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Linear Regression Plot examples
☕