Ridgeline Plot
CPU Usage Patterns by Server
Server CPU utilization distributions across infrastructure
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(42)
servers = ['web-01', 'web-02', 'api-01', 'api-02', 'db-01', 'cache-01']
cpu_means = [45, 52, 68, 72, 35, 28]
cpu_stds = [15, 18, 12, 14, 10, 8]
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')
colors = ['#27D3F5', '#27F5B0', '#6CF527', '#F5B027', '#F54927', '#F5276C']
x = np.linspace(0, 100, 200)
overlap = 2.2
for i, (server, mean, std, color) in enumerate(zip(servers, cpu_means, cpu_stds, colors)):
data = np.random.normal(mean, std, 1000)
data = np.clip(data, 0, 100)
kde = stats.gaussian_kde(data)
y = kde(x) * 8
y_offset = i * overlap
ax.fill_between(x, y_offset, y + y_offset, alpha=0.85, color=color, edgecolor='white', linewidth=0.8)
ax.text(-5, y_offset + 0.3, server, fontsize=10, color='white', va='center', ha='right', fontweight='500', family='monospace')
ax.set_xlim(-25, 100)
ax.set_ylim(-0.5, len(servers) * overlap + 2)
ax.set_xlabel('CPU Usage (%)', color='white', fontsize=11, fontweight='500')
ax.set_title('CPU Usage Distribution by Server', color='white', fontsize=14, fontweight='bold', pad=20)
ax.tick_params(colors='#888888', labelsize=9)
ax.set_yticks([])
for spine in ax.spines.values():
spine.set_visible(False)
ax.spines['bottom'].set_visible(True)
ax.spines['bottom'].set_color('#333333')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕