Clustermap
Crypto Market Correlations
Price movement correlations between cryptocurrencies
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
np.random.seed(321)
cryptos = ['BTC', 'ETH', 'BNB', 'SOL', 'ADA', 'XRP', 'DOT', 'AVAX', 'MATIC', 'LINK']
n = len(cryptos)
corr = np.eye(n)
corr[0, 1] = corr[1, 0] = 0.85
corr[0, 2] = corr[2, 0] = 0.75
corr[1, 3] = corr[3, 1] = 0.70
corr[3, 7] = corr[7, 3] = 0.65
corr[6, 7] = corr[7, 6] = 0.60
corr[8, 9] = corr[9, 8] = 0.55
for i in range(n):
for j in range(i+1, n):
if corr[i, j] == 0:
corr[i, j] = corr[j, i] = np.random.uniform(0.3, 0.6)
df = pd.DataFrame(corr, index=cryptos, columns=cryptos)
neon_cmap = LinearSegmentedColormap.from_list('crypto', ['#0a0a0f', '#4927F5', '#27D3F5', '#6CF527', '#F5B027'])
g = sns.clustermap(df, cmap=neon_cmap, vmin=0, vmax=1,
method='average', linewidths=0.5, linecolor='#1a1a2e',
figsize=(8, 7), dendrogram_ratio=(0.12, 0.12),
annot=True, fmt='.2f', annot_kws={'size': 8, 'color': 'white'},
cbar_pos=(0.01, 0.08, 0.008, 0.12),
tree_kws={'linewidths': 1.5, 'colors': '#F5B027'})
g.fig.patch.set_facecolor('#0a0a0f')
g.ax_heatmap.set_facecolor('#0a0a0f')
g.ax_heatmap.tick_params(colors='white', labelsize=9)
g.ax_row_dendrogram.set_facecolor('#0a0a0f')
g.ax_col_dendrogram.set_facecolor('#0a0a0f')
g.cax.tick_params(colors='white', labelsize=7)
g.fig.suptitle('Cryptocurrency Correlations', color='white', fontsize=13, fontweight='bold', y=1.02)
plt.show()
Library
Matplotlib
Category
Heatmaps & Density
More Clustermap examples
☕