KDE Plot

Cryptocurrency Volatility KDE

Density distribution of hourly price volatility across major cryptocurrencies

Output
Cryptocurrency Volatility KDE
Python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde

np.random.seed(444)
BG_COLOR = '#0d1117'
TEXT_COLOR = 'white'

# Hourly volatility (%)
bitcoin = np.abs(np.random.normal(0, 1.5, 600))
ethereum = np.abs(np.random.normal(0, 2.0, 600))
altcoins = np.abs(np.random.normal(0, 3.5, 600))

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

x_range = np.linspace(0, 15, 500)

for data, color, label in [(bitcoin, '#F5B027', 'Bitcoin'), 
                            (ethereum, '#4927F5', 'Ethereum'),
                            (altcoins, '#F5276C', 'Altcoins')]:
    kde = gaussian_kde(data)
    density = kde(x_range)
    ax.plot(x_range, density, color=color, linewidth=2.5, label=label)
    ax.fill_between(x_range, density, alpha=0.3, color=color)

ax.axvline(5, color='#ef4444', linestyle='--', alpha=0.8, linewidth=2)
ax.text(5.2, ax.get_ylim()[1]*0.8, 'High Risk', color='#ef4444', fontsize=10)

ax.set_xlabel('Hourly Volatility (%)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Density', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Cryptocurrency Volatility Distribution', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#888888', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#333333')
ax.legend(facecolor=BG_COLOR, edgecolor='#333333', labelcolor=TEXT_COLOR, fontsize=10)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support