Heatmap

Customer Churn Heatmap

Light theme heatmap showing churn risk by segment

Output
Customer Churn Heatmap
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.patches import FancyBboxPatch

fig, ax = plt.subplots(figsize=(12, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

segments = ['New', '1-6 months', '6-12 months', '1-2 years', '2+ years']
factors = ['Price', 'Service', 'Product', 'Competition', 'Inactivity']
churn_risk = np.array([
    [45, 30, 25, 20, 55],
    [35, 25, 20, 25, 40],
    [25, 20, 15, 30, 30],
    [20, 15, 10, 35, 20],
    [15, 10, 8, 40, 15]
])

# Diverging: green (safe) to red (risk)
colors = ['#065f46', '#10b981', '#fbbf24', '#f97316', '#dc2626']
cmap = LinearSegmentedColormap.from_list('risk', colors, N=256)

cell_width = 0.88
cell_height = 0.82
for i in range(len(segments)):
    for j in range(len(factors)):
        val = churn_risk[i, j]
        color = cmap(val / 60)
        rect = FancyBboxPatch((j - cell_width/2, i - cell_height/2), 
                               cell_width, cell_height,
                               boxstyle="round,pad=0.02,rounding_size=0.12",
                               facecolor=color, edgecolor='#e2e8f0', linewidth=1.5)
        ax.add_patch(rect)
        ax.text(j, i, f'{val}%', ha='center', va='center', 
                color='#1e293b', fontsize=11, fontweight='bold')

ax.set_xlim(-0.5, len(factors) - 0.5)
ax.set_ylim(-0.5, len(segments) - 0.5)
ax.set_aspect('equal')
ax.invert_yaxis()

ax.set_xticks(range(len(factors)))
ax.set_yticks(range(len(segments)))
ax.set_xticklabels(factors, color='#64748b', fontsize=10, fontweight='500')
ax.set_yticklabels(segments, color='#1e293b', fontsize=11, fontweight='500')

sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=0, vmax=60))
cbar = plt.colorbar(sm, ax=ax, shrink=0.8, aspect=30, pad=0.02)
cbar.set_label('Churn Risk %', color='#1e293b', fontsize=11, fontweight='500')
cbar.ax.yaxis.set_tick_params(color='#64748b')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#64748b')
cbar.outline.set_edgecolor('#e2e8f0')

for spine in ax.spines.values():
    spine.set_visible(False)

ax.set_title('Customer Churn Risk Analysis', fontsize=18, color='#1e293b', fontweight='bold', pad=20)
ax.tick_params(length=0)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support