KDE Plot
Customer Purchase Amount KDE
Density distribution of e-commerce purchase amounts by customer segment
Output
Python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
np.random.seed(666)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'
GRID_COLOR = '#e5e7eb'
# Purchase amounts ($)
new_customer = np.random.lognormal(3.5, 0.8, 400)
returning = np.random.lognormal(4.0, 0.7, 400)
vip = np.random.lognormal(4.8, 0.6, 400)
fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)
x_range = np.linspace(0, 400, 500)
for data, color, label in [(new_customer, '#27D3F5', 'New Customer'),
(returning, '#6CF527', 'Returning'),
(vip, '#F5276C', 'VIP')]:
data_clipped = data[data < 400]
kde = gaussian_kde(data_clipped)
density = kde(x_range)
ax.plot(x_range, density, color=color, linewidth=2.5, label=label)
ax.fill_between(x_range, density, alpha=0.25, color=color)
ax.set_xlabel('Purchase Amount ($)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Density', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Customer Purchase Amount by Segment', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.set_xlim(0, 400)
ax.tick_params(colors=TEXT_COLOR, labelsize=10)
for spine in ax.spines.values():
spine.set_color(GRID_COLOR)
ax.yaxis.grid(True, color=GRID_COLOR, linewidth=0.5, alpha=0.7)
ax.legend(facecolor=BG_COLOR, edgecolor=GRID_COLOR, labelcolor=TEXT_COLOR, fontsize=10)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
☕