Heatmap

Customer Segmentation Matrix

RFM analysis heatmap for customer segments

Output
Customer Segmentation Matrix
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(42)

# RFM-like customer data
segments = ['Champions', 'Loyal', 'Potential', 'New', 'At Risk', 'Lost']
metrics = ['Frequency', 'Monetary', 'Recency', 'Engagement', 'LTV', 'Satisfaction']

# Segment profiles
data = np.array([
    [0.95, 0.90, 0.95, 0.88, 0.92, 0.90],  # Champions
    [0.80, 0.75, 0.85, 0.72, 0.78, 0.82],  # Loyal
    [0.55, 0.50, 0.70, 0.60, 0.55, 0.65],  # Potential
    [0.30, 0.25, 0.90, 0.45, 0.20, 0.50],  # New
    [0.25, 0.35, 0.20, 0.30, 0.40, 0.35],  # At Risk
    [0.10, 0.15, 0.05, 0.08, 0.12, 0.15],  # Lost
])

df = pd.DataFrame(data, index=segments, columns=metrics)

# NEON coral colormap
neon_coral = LinearSegmentedColormap.from_list('neon_coral', ['#ffffff', '#F5B027', '#F5276C', '#9C2007'])

fig, ax = plt.subplots(figsize=(9, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

sns.heatmap(df, cmap=neon_coral, annot=True, fmt='.0%', linewidths=2, linecolor='#ffffff',
            vmin=0, vmax=1, annot_kws={'size': 11, 'fontweight': '600'},
            cbar_kws={'shrink': 0.8, 'label': 'Score'}, ax=ax)

ax.set_title('Customer Segment Analysis', color='#1f2937', fontsize=14, fontweight='bold', pad=15)
ax.tick_params(colors='#374151', labelsize=10)
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support