Boxplot

Cyber Threat Severity

Distribution of threat severity scores across attack vectors

Output
Cyber Threat Severity
Python
import matplotlib.pyplot as plt
import numpy as np

np.random.seed(42)
attack_types = ['Malware', 'Phishing', 'DDoS', 'Ransomware', 'Zero-Day']
data = [
    np.random.beta(2, 5, 100) * 10,
    np.random.beta(3, 4, 100) * 10,
    np.random.beta(4, 3, 100) * 10,
    np.random.beta(5, 2, 100) * 10,
    np.random.beta(6, 1.5, 100) * 10
]

fig, ax = plt.subplots(figsize=(10, 6), dpi=100)
ax.set_facecolor('#0a0a0f')
fig.patch.set_facecolor('#0a0a0f')

colors = ['#27D3F5', '#6CF527', '#F5B027', '#F54927', '#F5276C']
bp = ax.boxplot(data, widths=0.6, patch_artist=True, showfliers=True,
                flierprops=dict(marker='o', markerfacecolor='#F5276C', markersize=4, alpha=0.5),
                medianprops=dict(color='white', linewidth=2))

for patch, color in zip(bp['boxes'], colors):
    patch.set_facecolor(color)
    patch.set_alpha(0.8)
    patch.set_edgecolor(color)
for i, color in enumerate(colors):
    bp['whiskers'][i*2].set_color(color)
    bp['whiskers'][i*2+1].set_color(color)
    bp['caps'][i*2].set_color(color)
    bp['caps'][i*2+1].set_color(color)

ax.set_xticklabels(attack_types)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#333333')
ax.spines['bottom'].set_color('#333333')
ax.yaxis.grid(True, color='#1a1a2e', linewidth=0.5, zorder=0)
ax.set_axisbelow(True)
ax.tick_params(axis='both', colors='#888888', labelsize=9, length=0, pad=8)
ax.set_ylabel('Severity Score', fontsize=11, color='white', fontweight='500')
ax.set_xlabel('Attack Vector', fontsize=11, color='white', fontweight='500')
ax.set_title('Cyber Threat Severity Distribution', fontsize=14, color='white', fontweight='bold', pad=15)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support