KDE Plot

Daily Coffee Consumption Distribution

KDE showing daily coffee intake patterns.

Output
Daily Coffee Consumption Distribution
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats

np.random.seed(105)

coffee = np.random.gamma(3, 0.8, 1000)
coffee = coffee[coffee < 8]

kde = stats.gaussian_kde(coffee)
x = np.linspace(0, 8, 500)
y = kde(x)

fig, ax = plt.subplots(figsize=(12, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

ax.fill_between(x, y, alpha=0.4, color='#F5B027')
ax.plot(x, y, color='#F5B027', linewidth=3)

ax.axvspan(0, 2, alpha=0.1, color='#6CF527', label='Light (0-2)')
ax.axvspan(2, 4, alpha=0.1, color='#27D3F5', label='Moderate (2-4)')
ax.axvspan(4, 8, alpha=0.1, color='#F5276C', label='Heavy (4+)')

ax.axvline(4, color='#F5276C', linestyle='--', linewidth=2, alpha=0.7)
ax.text(4.1, max(y)*0.85, 'FDA Limit', color='#F5276C', fontsize=10, fontweight='bold')

ax.set_xlabel('Cups per Day', fontsize=12, color='#1f2937', fontweight='500')
ax.set_ylabel('Density', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Daily Coffee Consumption Distribution', fontsize=16, color='#1f2937', fontweight='bold', pad=15)

ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#d1d5db')
ax.legend(loc='upper right', facecolor='#f9fafb', edgecolor='#d1d5db', labelcolor='#374151')
ax.grid(True, alpha=0.3, color='#e5e7eb')
ax.set_xlim(0, 8)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support