Ridgeline Plot
Database Query Time by Operation
SQL performance with matrix green cyber aesthetic
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(444)
operations = ['SELECT', 'INSERT', 'UPDATE', 'DELETE', 'JOIN', 'AGGREGATE']
# Matrix green variations
colors = ['#6CF527', '#27F5B0', '#27D3F5', '#D3F527', '#6CF527', '#27F5B0']
data = {
'SELECT': np.random.lognormal(1.5, 0.8, 500),
'INSERT': np.random.lognormal(1.8, 0.6, 500),
'UPDATE': np.random.lognormal(2, 0.7, 500),
'DELETE': np.random.lognormal(1.7, 0.5, 500),
'JOIN': np.random.lognormal(2.5, 0.9, 500),
'AGGREGATE': np.random.lognormal(2.8, 1, 500)
}
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#020B14')
ax.set_facecolor('#020B14')
overlap = 1.7
x_range = np.linspace(0, 100, 300)
for i, (op, time) in enumerate(data.items()):
time = np.clip(time, 0, 100)
kde = stats.gaussian_kde(time, bw_method=0.3)
y = kde(x_range) * 4
baseline = i * overlap
# Matrix glow
for w, a in [(15, 0.08), (10, 0.12), (6, 0.2), (3, 0.4)]:
ax.plot(x_range, y + baseline, color=colors[i], linewidth=w, alpha=a)
ax.fill_between(x_range, baseline, y + baseline, alpha=0.4, color=colors[i])
ax.plot(x_range, y + baseline, color='white', linewidth=1, alpha=0.9)
ax.text(-3, baseline + 0.15, op, fontsize=10, color=colors[i],
ha='right', va='bottom', fontweight='600', family='monospace')
ax.set_xlim(-20, 100)
ax.set_ylim(-0.3, len(operations) * overlap + 2)
ax.set_xlabel('Query Time (ms)', fontsize=12, color='#555555', fontweight='500')
ax.set_title('Database Query Time by Operation', fontsize=16, color='#6CF527', fontweight='bold', pad=20)
ax.tick_params(axis='x', colors='#444444', labelsize=10)
ax.tick_params(axis='y', left=False, labelleft=False)
for spine in ax.spines.values():
spine.set_visible(False)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕