Faceted Scatter Plot
DDR Memory Performance Analysis
DDR technology evolution performance analysis
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(1111)
generations = ['DDR3', 'DDR4', 'DDR5', 'HBM3']
data = []
for gen in generations:
n = 38
frequency = np.random.uniform(800, 4000, n)
bw_coeffs = {'DDR3': 0.012, 'DDR4': 0.018, 'DDR5': 0.028, 'HBM3': 0.045}
bandwidth = bw_coeffs[gen] * frequency + np.random.normal(0, 3, n)
for f, b in zip(frequency, bandwidth):
data.append({'Frequency (MHz)': f, 'Bandwidth (GB/s)': b, 'Generation': gen})
df = pd.DataFrame(data)
sns.set_style("whitegrid", {
'axes.facecolor': '#ffffff',
'figure.facecolor': '#ffffff',
'grid.color': '#eeeeee'
})
palette = ['#C82909', '#F5B027', '#6CF527', '#27D3F5']
g = sns.lmplot(
data=df,
x='Frequency (MHz)',
y='Bandwidth (GB/s)',
hue='Generation',
col='Generation',
col_wrap=2,
height=3.5,
aspect=1.2,
palette=palette,
scatter_kws={'alpha': 0.75, 's': 52, 'edgecolor': 'white', 'linewidths': 0.6},
line_kws={'linewidth': 2.5},
ci=95
)
g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
ax.set_facecolor('#ffffff')
for spine in ax.spines.values():
spine.set_color('#dddddd')
g.fig.suptitle('Memory Technology Evolution', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Faceted Scatter Plot examples
☕